【题目】如图:一个圆锥的底面半径为2,高为6,在其中有一个半径为x的内接圆柱.
(1)试用x表示圆柱的体积;
(2)当x为何值时,圆柱的侧面积最大,最大值是多少.
【答案】
(1)解:∵圆锥的底面半径为2,高为6,
∴内接圆柱的底面半径为x时,它的上底面截圆锥得小圆锥的高为3x
因此,内接圆柱的高 h=6﹣3x;
∴圆柱的体积V=πx2(6﹣3x) (0<x<2)
(2)解:由(1)得,圆柱的侧面积为
S侧=2πx(6﹣3x)=6π(2x﹣x2) (0<x<2)
令t=2x﹣x2,当x=1时tmax=1.可得当x=1时,( S侧)max=6π
∴当圆柱的底面半径为1时,圆柱的侧面积最大,侧面积有最大值为6π.
【解析】(1)根据圆锥的底面半径为2、高为6,可得内接圆柱的半径为x时,它的高h=6﹣3x,由此结合圆柱体积公式即可列出用x表示圆柱的体积的式子;(2)由(1)可得圆柱的侧面积S侧=6π(2x﹣x2),结合二次函数的单调性与最值,可得当圆柱的底面半径为1时,圆柱的侧面积最大,侧面积有最大值为6π.
【考点精析】利用旋转体(圆柱、圆锥、圆台)对题目进行判断即可得到答案,需要熟知常见的旋转体有:圆柱、圆锥、圆台、球.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ< , x∈R)的部分图象如图所示.
(1)求函数y=f(x)的解析式;
(2)当x∈[﹣ , ]时,求f(x)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有一圆心角为 ,半径为12cm的扇形铁皮(如图).P,Q是弧AB上的动点且劣弧 的长为2πcm,过P,Q分别作与OA,OB平行或垂直的线,从扇形上裁剪出多边形OHPRQT,将该多边形面积表示为角α的函数,并求出其最大面积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知射线OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).过点P(1,0)作直线分别交射线OA,OB于点A,B.
(1)当AB的中点在直线x﹣2y=0上时,求直线AB的方程;
(2)当△AOB的面积取最小值时,求直线AB的方程.
(3)当PAPB取最小值时,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金超过130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是年.(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=1+x﹣ + ﹣ +…+ ;g(x)=1﹣x+ ﹣ + ﹣…﹣ ;设函数F(x)=[f(x+3)]2015[g(x﹣4)]2016 , 且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b﹣a的最小值为( )
A.8
B.9
C.10
D.11
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴交于点D,且有|FA|=|FD|,当点A的横坐标为3时,△ADF为正三角形
(1)求C的方程
(2)延长AF交抛物线于点E,过点E作抛物线的切线l1 , 求证:l1∥l.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com