精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-2n(n-1)(n=1,2,3,…).
(Ⅰ)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(Ⅱ)求
lim
n→∞
(
1
a1a2
+
1
a2a3
+…+
1
an-1an
)

(Ⅲ)是否存在自然数n,使得S1+
S2
2
+
S3
3
+…+
Sn
n
=400
?若存在,求n的值;若不存在,说明理由.
分析:(Ⅰ)由题意知an=Sn-Sn-1=nan-(n-1)an-1-4(n-1),从而得到an-an-1=4(n=2,3,4,).由此可知an=4n-3.所以Sn=
1
2
(a1+an)n=2n2-n

(Ⅱ)由题设知
lim
n→∞
(
1
a1a2
+
1
a2a3
++
1
an-1an
)
=
lim
n→∞
(
1
1×5
+
1
5×9
+
1
9×13
++
1
(4n-7)(4n-3)
)
=
lim
n→∞
1
4
(1-
1
4n-3
)
;计算可得答案.
(Ⅲ)由题设条件知
Sn
n
=2n-1
,所以S1+
S2
2
+
S3
3
++
Sn
n
=1+3+5+7++(2n-1)=n2
.由此可知存在满足条件的自然数n=20.
解答:解:(Ⅰ)当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-4(n-1),(2分)
得an-an-1=4(n=2,3,4,).(3分)
∴数列{an}是以a1=1为首项,4为公差的等差数列.(4分)
∴an=4n-3.(5分)Sn=
1
2
(a1+an)n=2n2-n
.(6分)
(Ⅱ)
lim
n→∞
(
1
a1a2
+
1
a2a3
++
1
an-1an
)
=
lim
n→∞
(
1
1×5
+
1
5×9
+
1
9×13
++
1
(4n-7)(4n-3)
)

=
lim
n→∞
1
4
((
1
1
-
1
5
)+(
1
5
-
1
9
)+(
1
9
-
1
13
)++(
1
4n-7
-
1
4n-3
))
(8分)
=
lim
n→∞
1
4
(1-
1
4n-3
)
=
1
4
.(10分)
(Ⅲ)由Sn=2n2-n得:
Sn
n
=2n-1
,(11分)
S1+
S2
2
+
S3
3
++
Sn
n
=1+3+5+7++(2n-1)=n2
.(13分)
令n2=400,得n=20,所以,存在满足条件的自然数n=20.(14分)
点评:本题考查数列性质的综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案