精英家教网 > 高中数学 > 题目详情
6.正方体的三视图中(  )
A.只可能是正方形B.不可能出现长方形
C.不可能出现正三角形D.不可能出现正六边形

分析 根据正方体的几何特征,结合三视图的定义,可得答案.

解答 解:正方体的三视图中,
如果视线和正方体的面垂直,则是正方形;
如果视线和正方体的某组面平行,不与其它的面垂直,则是长方形;
如果视线不与棱平行,则可能为六边形,
但一定不会出现三角形,
故选:C

点评 本题考查的知识点是简单几何体的三视图,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知正数x、y满足:2x+y-xy=0,则x+2y的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{sinx(x>0)}\\{(\frac{4}{3π})^{x}(x≤0)}\end{array}\right.$,则f(f(-1))的值为(  )
A.$\frac{3π}{4}$B.$\frac{\sqrt{2}}{2}$C.-sin1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知二次函数f(x)=ax2+bx+c.
(1)若a=c>0,f(1)=1,对任意x∈|[-2,2],f(x)的最大值与最小值之和为g(a),求g(a)的表达式;
(2)若a,b,c为正整数,函数f(x)在(-$\frac{1}{4}$,$\frac{1}{4}$)上有两个不同零点,求a+b+c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}的通项公式为an=-n2+9n,则该数列第4或5项最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=[x],其中[x]表示不超过x的最大整数,例如[-3.5]=-4,[2.1]=2,给定以下结论:
①函数y=f(x)与y=x-1的图象无交点;
②函数y=f(x)与y=lg|x|的图象只有一个交点;
③函数y=f(x)与y=2x-1的图象有两个交点;
④函数y=|f(x)|与y=x2的图象有三个交点.
其中正确的有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“?x∈R,ex>x”的否定是(  )
A.$?{x_0}∈R,{e^{x_0}}>{x_0}$B.?x∈R,ex<x
C.?x∈R,ex≤xD.$?{x_0}∈R,{e^{x_0}}≤{x_0}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给出下列结论:
①命题“?x∈R,x2+x≥0”的否定是“?x∈R,x2+x<0”;
②命题“若x2+2x+q=0有不等实根,则q<1”的逆否命题是真命题;
③命题“平行四边形的对角线互相平分”的否命题是真命题;
④命题$p:?x∈R,{x^2}-x+\frac{1}{2}<0$;命题q:设A,B,C为△ABC的三个内角,若A<B,则sinA<sinB.命题p∨q为假命题.
其中,正确结论的个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了解甲、乙两校高二年级学生某次联考物理成绩情况,从这两学校中分别随机抽取30名高二年级的物理成绩(百分制)作为样本,样本数据的茎叶图如图所示:

(1)若甲校高二年级每位学生被抽取的概率为0.15,求甲校高二年级学生总人数;
(2)根据茎叶图,对甲、乙两校高二年级学生的物理成绩进行比较,写出两个统计结论(不要求计算);
(3)从样本中甲、乙两校高二年级学生物理成绩不及格(低于60分为不及格)的学生中随机抽取2人,求至少抽到一名乙校学生的概率.

查看答案和解析>>

同步练习册答案