设函数f(x)=x2+bln(x+1),
(1)若对定义域的任意x,都有f(x)≥f(1)成立,求实数b的值;
(2)若函数f(x)在定义域上是单调函数,求实数b的取值范围.
分析:(1)根据对定义域的任意x,都有f(x)≥f(1)成立知函数f(x)在定义域内的最小值为f(1),从而得到f′(1)=0即可
(2)要求函数f(x)在定义域上是单调函数,即要求f′(x)≥0或f′(x)≤0在(-1,+∞)上恒成立,然后分类讨论:当f′(x)≥0时,即2x
2+2x+b≥0在(-1,+∞)上恒成立,即b≥-2x
2-2x=
-2(x+)2+恒成立;当f′(x)≤0时,2x
2+2x+b≤0,即b≤-(2x
2+2x)恒成立,因-(2x
2+2x)在(-1,+∞)上没有最小值,故不符合题意
解答:解:(1)由x+1>0得x>-1
∴f(x)的定义域为(-1,+∞),
对x∈(-1,+∞),都有f(x)≥f(1),
∴f(1)是函数f(x)的最小值,故有f′(1)=0,
f/(x)=2x+,∴
2+=0,
解得b=-4.
(2)∵
f/(x)=2x+=,
又函数f(x)在定义域上是单调函数,
∴f′(x)≥0或f′(x)≤0在(-1,+∞)上恒成立.
若f′(x)≥0,
∵x+1>0,
∴2x
2+2x+b≥0在(-1,+∞)上恒成立,
即b≥-2x
2-2x=
-2(x+)2+恒成立,由此得b≥
;
若f′(x)≤0,
∵x+1>0,
∴2x
2+2x+b≤0,即b≤-(2x
2+2x)恒成立,
因-(2x
2+2x)在(-1,+∞)上没有最小值,
∴不存在实数b使f(x)≤0恒成立.
综上所述,实数b的取值范围是
[,+∞).
故答案为:(1)b=-4;(2)实数b的取值范围是
[,+∞).
点评:本题考查了利用导数求闭区间上函数的最值,利用导数研究函数的单调性,另外还有分类讨论的思想,属于基础题.