精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆过点,离心率为分别为左右焦点.

(1)求椭圆的标准方程;

(2)若上存在两个点,椭圆上有两个点满足三点共线,三点共线,且,求四边形面积的取值范围.

【答案】(1)(2)

【解析】

试题分析:(1)求椭圆标准方程,基本方法为待定系数法,根据题意可列两个独立条件,及,解得(2)因为,所以,先根据抛物线定义可求焦点弦长,再根据直线与椭圆联立方程组,结合韦达定理求弦长,最后根据一元函数解析式求值域

试题解析:(1)由题意得:,得,则方程

因为椭圆过点,解得,所以

所以椭圆方程为:.

(2)当直线斜率不存在时,直线的斜率为0,易得

当直线斜率存在时,设直线方程为:,与联立得

,则

因为,所以直线的方程为:

将直线与椭圆联立得:

由弦长公式

所以四边形的面积,令

上式

所以综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,有一段河流,河的一侧是以O为圆心,半径为米的扇形区域OCD,河的另一侧是一段笔直的河岸l,岸边有一烟囱AB(不计B离河岸的距离),且OB的连线恰好与河岸l垂直,设OB与圆弧的交点为E.经测量,扇形区域和河岸处于同一水平面,在点C,点O点E处测得烟囱AB的仰角分别为

(1)求烟囱AB的高度;

(2)如果要在CE间修一条直路,求CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某飞机失联,经卫星侦查,其最后出现在小岛附近,现派出四艘搜救船,为方便联络,船始终在以小岛为圆心,100海里为半径的圆上,船构成正方形编队展开搜索,小岛在正方形编队外(如图).设小岛的距离为船到小岛的距离为.

(1)请分别求关于的函数关系式,并分别写出定义域;

(2)当两艘船之间的距离是多少时搜救范围最大(即最大)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是两条公路(近似看成两条直线),,在内有一纪念塔(大小忽略不计),已知到直线的距离分别为=6千米,=12千米.现经过纪念塔修建一条直线型小路,与两条公路分别交于点

(1)求纪念塔到两条公路交点处的距离;

(2)若纪念塔为小路的中点,求小路的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点,过点的直线交抛物线两点.

(Ⅰ)若点满足,求直线的方程;

(Ⅱ)为直线上任意一点,过点的垂线交椭圆两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线).

(1)证明:直线过定点;

(2)若直线不经过第四象限,求的取值范围;

(3)若直线轴负半轴于,交轴正半轴于,△的面积为为坐标原点),求的最小值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,解不等式

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】增强市民的节能环保意识,郑州市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示,其中年龄分组区是:

求图值,并根据频率分布直方图估计这500名志愿者中年龄在的人数;

抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人这3名志愿者中“年龄低于35岁”的人数为分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将ABF沿AF折起,得到如图2所示的三棱锥ABCF,其中BC=

)证明:DE平面BCF;

)证明:CF平面ABF;

)当AD=时,求三棱锥FDEG的体积.

查看答案和解析>>

同步练习册答案