精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.

(1)证明:平面PBE平面PAB;
(2)求平面PAD和平面PBE所成二面角的正弦值。
(1)根据面面垂直的判定定理来分析得到证明。主要是证明AH平面PBE
(2)

试题分析:(1)略……………………………………………………………………5分
(2)延长AD,BE相交于F,联结PF,过A作AH⊥PB于H,
平面PBE平面PAB知,AH平面PBE,
过H作HGPF于联结AG,
     
则∠AGH为所求锐二面角的平面角……………………………8分
计算略
sin∠AGH=…………………………………………………12分
法2  向量法(略)
点评:对于立体几何中面面垂直的证明,一般可以通过两种方法来得到。几何法,就是面面垂直的判定定理,或者运用向量法来得到,同理对于角的求解也是这样的两种方法,进而反而系得到结论。属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图在三棱锥S.

(1)证明
(2)求侧面与底面所成二面角的大小。
(3)求异面直线SC与AB所成角的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,

(1)线段的中点为,线段的中点为,求证:
(2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)如图:AD=2,AB=4的长方形所在平面与正所在平面互相垂直,分别为的中点.

(1)求四棱锥-的体积;
(2)求证:平面
(3)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱柱中,底面是正三角形,侧棱底面,点是侧面 的中心,若,则直线与平面所成角的大小为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的长轴为,短轴为,将椭圆沿y轴折成一个二面角,使得点在平面上的射影恰好为椭圆的右焦点,则该二面角的大小为(   ).
A.75°B.60°  C.45°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体中,直线(   )
A.异面且垂直B.异面但不垂直
C.相交且垂直D.相交但不垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,已知四棱锥P—ABCD中,底面ABCD为菱形,PA平面ABCD,,BC=1,E为CD的中点,PC与平面ABCD成角。

(1)求证:平面EPB平面PBA;(2)求二面角P-BD-A 的余弦值

查看答案和解析>>

同步练习册答案