精英家教网 > 高中数学 > 题目详情

为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:

(Ⅰ)估计该校男生的人数;
(Ⅱ)估计该校学生身高在170~185 cm之间的概率;
(Ⅲ)从样本中身高在180~190 cm之间的男生中任选2人,求至少有1人身高在185~190 cm之间的概率.

(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.
(2) P1=0.5.(3)率P2.

解析试题分析:(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.
(2)由统计图知,样本中身高在170~185 cm之间的学生有14+13+4+3+1=35人,样本容量为70,所以样本中学生身高在170~185 cm之间的频率f==0.5,故由f估计该校学生身高在170~185 cm之间的概率P1=0.5.
(3)样本中身高在180~185 cm之间的男生有4人,设其编号为①,②,③,④,样本中身高在185~190 cm之间的男生有2人,设其编号为⑤,⑥,从上述6人中任取2人的树状图为:

故从样本中身高在180~190 cm之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185~190 cm之间的可能结果数为9,因此,所求概率P2.
考点:分层抽样,频率分布直方图,古典概型概率的计算。
点评:中档题,频率分布直方图中,频率=频数÷组距。涉及古典概型概率的计算问题,关键是弄清“事件数”,常常利用“树图法”或“坐标法”。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了调查某大学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:
表1:男生上网时间与频数分布表

上网时间(分钟)





人数
5
25
30
25
15
表2:女生上网时间与频数分布表
上网时间(分钟)





人数
10
20
40
20
10
(Ⅰ)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;
(Ⅱ)完成表3的列联表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?
(Ⅲ)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.
表3 :
 
上网时间少于60分钟
上网时间不少于60分钟
合计
男生
 
 
 
女生
 
 
 
合计
 
 
 
附:,其中

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:

(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);
(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为,估计的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问题:

分组
频数
频率
[0,1)
10
0.10
[1,2)

0.20
[2,3)
30
0.30
[3,4)
20
 
[4,5)
10
0.10
[5,6]
10
0.10
合计
100
1.00

(1)求右表中的值;
(2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如表:

分组
频数












合计

(1)列出频率分布表,并画出频率分布直方图;
(2)估计纤度落在中的概率及纤度小于的概率是多少?
(3)从频率分布直方图估计出纤度的众数、中位数和平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人,
(1)根据以上数据建立一个的列联表;(2)能否在犯错误的概率不超过0.05的前提下认为晕机与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

延迟退休年龄的问题,近期引发社会的关注.人社部于2012年7月25日上午召开新闻发布会表示,我国延迟退休年龄将借鉴国外经验,拟对不同群体采取差别措施,并以“小步慢走”的方式实施.推迟退休年龄似乎是一种必然趋势,然而反对的声音也随之而起.现对某市工薪阶层关于“延迟退休年龄”的态度进行调查,随机抽取了50人,他们月收入的频数分布及对“延迟退休年龄”反对的人数

月收入(元)
[1000,2000)
[2000,3000)
[3000,4000)
[4000,5000)
[5000,6000)
[6000,7000)
频数
5
10
15
10
5
5
反对人数
4
8
12
5
2
1
(1)由以上统计数据估算月收入高于4000的调查对象中,持反对态度的概率;
(2)若对月收入在[1000,2000),[4000,5000)的被调查对象中各随机选取两人进行跟踪调查,记选中的4人中赞成“延迟退休年龄”的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某电视台举办了“中华好声音”大型歌手选秀活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班,由组委会聘请两位导师各负责一个班进行声乐培训。下面是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图:

赛制规定:参加复赛的40名选手中,获得的支持票数排在前5名的选手可进入决赛,若第5名出现并列,则一起进入决赛;另外,票数不低于95票的选手在决赛时拥有“优先挑战权”。
1、从进入决赛的选手中随机抽出3名,求其中恰有1名拥有“优先挑战权”的概率;
2、电视台决定,复赛票数不低于85票的选手将成为电视台的“签约歌手”,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成为‘签约歌手’与选择的导师有关?

 
甲班
乙班
合计
签约歌手
 
 
 
末签约歌手
 
 
 
合计
 
 
 
下面临界值表仅供参考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
参考公式:K2= ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


某车间为了规定工时额,需确定加工零件所花费的时间,为此做了4次试验,得到的数据如下图:若加工时间与零件个数之间有较好的线性相关关系。(


 
2
 
3
 
4
 
5
 

 
2.5
 
3
 
4
 
4.5
 
 
(1)求加工时间与零件个数的线性回归方程;
(2)试预报加工10个零件需要的时间。
(附:回归方程系数公式)

查看答案和解析>>

同步练习册答案