精英家教网 > 高中数学 > 题目详情
如果函数满足:对于任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤1恒成立,则a的取值范围是( )
A.
B.
C.
D.
【答案】分析:由题意函数满足:对于任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤1恒成立,必有函数满足其最大值与最小值的差小于等于1,由此不等式解出参数a的范围即可,故可先求出函数的导数,用导数判断出最值,求出最大值与最小值的差,得到关于a的不等式,解出a的值
解答:解:由题意f′(x)=x2-a2
当a2≥1时,在x∈[0,1],恒有导数为负,即函数在[0,1]上是减函数,故最大值为f(0)=0,最小值为f(1)=-a2,故有,解得|a|≤,故可得1≤a≤
当a2∈[0,1],由导数知函数在[0,a]上增,在[a,1]上减,故最大值为f(a)=又f(0)=0,矛盾,a∈[0,1]不成立,
故选A.
点评:考查学生理解函数恒成立的条件,理解导数的几何意义,以及利用导数求函数最值的能力.
练习册系列答案
相关习题

科目:高中数学 来源:2010年高考试题(上海秋季)解析版(理) 题型:解答题

 [番茄花园1] 本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。

若实数满足,则称远离.

(1)若比1远离0,求的取值范围;

(2)对任意两个不相等的正数,证明:远离

(3)已知函数的定义域.任取等于中远离0的那个值.写出函数的解析式,并指出它的基本性质(结论不要求证明).

23本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.

已知椭圆的方程为,点P的坐标为(-a,b).

(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;

(2)设直线交椭圆两点,交直线于点.若,证明:的中点;

(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点满足,写出求作点的步骤,并求出使存在的θ的取值范围.

 

 

 

 


 [番茄花园1]22.

查看答案和解析>>

同步练习册答案