精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

如图1,在三棱锥P-A.BC中,PA.⊥平面A.BC,A.C⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.

(1) 证明:A.D⊥平面PBC;

(2) 求三棱锥D-A.BC的体积;

(3) 在∠A.CB的平分线上确定一点Q,使得PQ∥平面A.BD,并求此时PQ的长.

 

【答案】

(1)见解析

(2)   ;

(3)

【解析】本题考查由三视图求面积、体积,直线与平面平行的性质,直线与平面垂直的判定,考查空间想象能力,逻辑思维能力,计算能力,是中档题

(Ⅰ)证明AD垂直平面PBC内的两条相交直线PC、BC,即可证明AD⊥平面PBC;

(Ⅱ)求出三棱锥的底面ABC的面积,求出高BC,再求三棱锥D-ABC的体积;

(Ⅲ)取AB的中点O,连接CO并延长至Q,使得CQ=2CO,点Q即为所求,证明PQ平行平面ABD内的直线OD,即可证明PQ∥平面ABD,在直角△PAQ中,求此时PQ的长.

(2)      

…… 8分

(3)取A.B的中点O,连接CO并延长至Q,使得CQ=2CO,连接PQ,OD,点Q即为所求.

因为O为CQ的中点,D为PC的中点,  PQ∥OD,

 PQ平面A.BD, OD平面A.BD        PQ∥平面A.BD

连接A.Q,BQ,

四边形A.CBQ的对角线互相平分, 且A.C=BC,A.CBC,   

四边形A.CBQ为正方形,CQ即为∠A.CB的平分线       

A.Q=4,PA.平面A.BC 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案