精英家教网 > 高中数学 > 题目详情
9.已知点$A(-\sqrt{3},0)$和$B(\sqrt{3},0)$,动点C引A、B两点的距离之和为4.
(1)求点C的轨迹方程;
(2)点C的轨迹与直线y=x-2交于D、E两点,求弦DE的长.

分析 (1)运用椭圆的定义和a,b,c的关系,可得a=2,b=1,进而得到椭圆方程;
(2)点C的轨迹与直线y=x-2联立,得5x2-16x+12=0,利用弦长公式,由此能求出线段DE的长.

解答 解:(1)由椭圆的定义可知,曲线是以A,B为焦点的椭圆,
且2a=4,即a=2,c=$\sqrt{3}$,b=1,
即有点C的轨迹方程为$\frac{{x}^{2}}{4}$+y2=1;
(2)点C的轨迹与直线y=x-2联立,得5x2-16x+12=0,
设D(x1,y1)、E(x2,y2),则x1+x2=$\frac{16}{5}$,x1x2=$\frac{12}{5}$,
∴|DE|=$\sqrt{2}•\sqrt{\frac{256}{25}-4×\frac{12}{5}}$=$\frac{4\sqrt{2}}{5}$.
故线段DE的长为$\frac{4\sqrt{2}}{5}$.

点评 本题考查椭圆的方程和性质,涉及弦长公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知Sn为等比数列{an}的前n项和,且S5=S4-2a4,则$\frac{{S}_{5}}{{S}_{4}}$等于(  )
A.-$\frac{33}{15}$B.$\frac{33}{15}$C.-$\frac{33}{17}$D.$\frac{33}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设正数x,y满足x2+$\frac{{y}^{2}}{2}$=1,则x•$\sqrt{1+{y}^{2}}$的最大值为(  )
A.$\frac{3}{2}$B.$\frac{3\sqrt{2}}{2}$C.$\frac{3}{4}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等差数列{an}满足a1+a2+a3+…+a101=0,则a51=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$y=\frac{e^x}{{{e^{2x}}-1}}$的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知关于x、y的二元一次不等式组$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\\{\;}\end{array}\right.$
(1)求函数u=3x-y的最大值和最小值;
(2)求函数d=(x-2)2+(y+2)2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列四个命题中正确的是(  )
A.若a>b,c>d,则ac>bdB.若ab≥0,则|a+b|=|a|+|b|
C.若x>2,则函数y=x+$\frac{1}{x}$有最小值2D.若a<b<0,则a2<ab<b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.实数a=0.33,b=log30.3,c=30.3的大小关系是(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{3}{x+1},x∈[{0,5}]$,求函数的最大值和最小值.

查看答案和解析>>

同步练习册答案