精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=$\left\{\begin{array}{l}{{a}^{x},}&{0≤x≤1}\\{\frac{x}{a}+1,}&{-1≤x<0}\end{array}\right.$(a>0且a≠1).若f(x)的最大值与最小值之差为$\frac{3}{2}$,则a的取值为2或$\frac{2}{3}$.

分析 对a讨论,分a>1,0<a<1,结合指数函数的单调性,即可得到最值,解方程可得a的值.

解答 解:当a>1时,f(x)在[0,1]递增,
即有f(x)∈[1,a];
f(x)在[-1,0)递增,可得f(x)∈[1-$\frac{1}{a}$,1);
此时f(x)的最大值为a,最小值为1-$\frac{1}{a}$,
由a-(1-$\frac{1}{a}$)=$\frac{3}{2}$,解得a=2($\frac{1}{2}$舍去);
当0<a<1时,f(x)在[0,1]递减,
即有f(x)∈[a,1];
f(x)在[-1,0)递增,可得f(x)∈[1-$\frac{1}{a}$,1);
此时f(x)的最大值为1,最小值为1-$\frac{1}{a}$,
由1-(1-$\frac{1}{a}$)=$\frac{3}{2}$,解得a=$\frac{2}{3}$.
综上可得a=2或$\frac{2}{3}$.
故答案为:2或$\frac{2}{3}$.

点评 本题考查函数的最值的求法,注意运用分类讨论的思想方法,结合指数函数的单调性,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.双曲线T:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为10,焦点到渐近线的距离为3,则它的实轴长等于8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过圆x2+y2=4上一点($\sqrt{2}$,1)的切线方程为(  )
A.x+$\sqrt{2}$y=4B.$\sqrt{2}$x+y=3C.$\sqrt{2}$x+y=4D.x+$\sqrt{2}$y=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{{x}^{2}+bx+a}{x}$(a∈R+).
(1)若函数f(x)是奇函数,求b的值;
(2)在(1)的条件下求函数f(x)在x∈[2,±∞)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x-$\frac{1}{x}$,若不等式t•f(2x)≥2x-1对x∈(0,1]恒成立,则t的取值范围为[$\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{m}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{n}$=(-sin$\frac{x}{2}$,-cos$\frac{x}{2}$).
(I)若|$\overrightarrow{m}$+$\overrightarrow{n}$|=$\sqrt{3}$.且x∈[$\frac{π}{2}$,π],求x的值;
(Ⅱ)函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+|$\overrightarrow{m}$+$\overrightarrow{n}$|2,在△ABC中,a,b,c分别是三个内角A,B,C的对边,且f($\frac{π}{4}$-$\frac{A}{2}$)=$\frac{1}{2}$,a=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知M是椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{16}$=1上的点,若F1,F2是椭圆的两个焦点,则|MF1|+|MF2|=(  )
A.6B.8C.18D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,正方体ABCD-A1B1C1D1中,E是A1B上的点,F是AC上的点,且A1E=2EB,CF=2AF.求证:EF∥平面A1B1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合M={x|-1≤x≤7},集合N={x|k+1≤x≤2k-1},若M∩N=∅,求k的取值范围.

查看答案和解析>>

同步练习册答案