精英家教网 > 高中数学 > 题目详情
5.若角α的顶点在原点,始边与x轴的正半轴重合,终边在函数y=-2x(x≤0)的图象上,则cosα=-$\frac{\sqrt{5}}{5}$.

分析 在终边上任意取一点(-1,2),则由任意角的三角函数的定义,可得cosα的值.

解答 解:若角α的顶点在原点,始边与x轴的正半轴重合,终边在函数y=-2x(x≤0)的图象上,
在终边上任意取一点(-1,2),则由任意角的三角函数的定义,可得cosα=$\frac{-1}{\sqrt{1+4}}$=-$\frac{\sqrt{5}}{5}$,
故答案为:-$\frac{\sqrt{5}}{5}$.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|x2-x-12≤0},B={x|2m-1<x<m+1}
(1)若m=-1,求A∩∁RB;
(2)若A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知sinα-cosα=$\frac{1}{2}$,且α∈(0,π),则sinα+cosα=(  )
A.$\frac{{\sqrt{7}}}{2}$B.$-\frac{{\sqrt{7}}}{2}$C.$±\frac{{\sqrt{7}}}{2}$D.$±\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.△ABC中,$\frac{a}{cosA}$=$\frac{b}{cosB}$=$\frac{c}{cosC}$,则△ABC一定是(  )
A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若在区间(a,b)内,f′(x)>0,且f(a)≥0,则在(a,b)内有(  )
A.f(x)>0B.f(x)<0C.f(x)=0D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=ax3+bx2+1,在x=1处取得极大值3,则f(x)的极小值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}是等比数列,且a1=-1,a2=-2,那么a5=(  )
A.-6B.8.C.16D.-16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在极坐标系中,点( 2,$\frac{π}{2}$)到直线θ=$\frac{π}{6}$(ρ∈R)的距离是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若不等式组$\left\{\begin{array}{l}\left|{x\left|{+\left|{y\left.{\;}\right|≤2}\right.}\right.}\right.\\ y+2≤k(x+1)\end{array}\right.$表示平面三角形区域,则实数k的取值范围是(  )
A.〔$\frac{3}{2}$,+∞)∪($-\frac{1}{2}$,O)B.(0,$\left.{\frac{3}{2}}]$∪(-∞,-$\frac{1}{2}$)C.$[{\frac{2}{3}}\right.$,+∞)∪(-2,0)D.$({0,\frac{2}{3}}]$∪(-∞,-2)

查看答案和解析>>

同步练习册答案