精英家教网 > 高中数学 > 题目详情
设x,y想,满足约束条件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为12,则
3
a
+
2
b
的最小值为(  )
A、
11
3
B、
8
3
C、
25
6
D、4
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式对应的平面区域,利用线性规划的知识先求出a,b的关系,然后利用基本不等式求
3
a
+
2
b
的最小值.
解答: 解:由z=ax+by(a>0,b>0)得y=-
a
b
x+
z
b

作出可行域如图:
∵a>0,b>0,
∴直线y=-
a
b
x+
z
b
的斜率为负,且截距最大时,z也最大.
平移直线y=-
a
b
x+
z
b
,由图象可知当y=-
a
b
x+
z
b
经过点A时,
直线的截距最大,此时z也最大.
3x-y-6=0
x-y+2=0
,解得
x=4
y=6
,即A(4,6).
此时z=4a+6b=12,
a
3
+
b
2
=1,
3
a
+
2
b
=(
3
a
+
2
b
)(
a
3
+
b
2
)=1+1+
3b
2a
+
2a
3b
≥2+2
3b
2a
2a
3b
=4,
当且仅当
3b
2a
=
2a
3b
时取=号,
故选:D
点评:本题主要考查线性规划的应用以及基本不等式的应用,利用数形结合是解决线性规划题目的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn=λan-
n
λ+1
,(λ≠±1,n∈N*).
(Ⅰ)如果λ=0,求数列{an}的通项公式;
(Ⅱ)如果λ=2,求证:数列{an+
1
3
}
为等比数列,并求Sn
(Ⅲ)如果数列{an}为递增数列,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx
x+1

(Ⅰ)若函数f(x)在区间[t,+∞)(t∈N+)上存在极值,求t的最大值;
(Ⅱ)设an=f(n)(n∈N*);
(1)问数列{an}中是否存在as=at(s≠t)?若存在,求出所有相等的两项;若不存在,请说明理由.
(2)若bn=(n+1)an,求证:
n
k=2
1
k
<bn
n-1
k=1
1
k

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),且
m
n

(1)将y表示为x的函数f(x),并求f(x)的对称轴的方程;
(2)若函数y=f(x)的图象在y轴的右侧的最高点的横坐标组成一个数列{an},求a1+a2+…+a2016的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的正视图与侧视图如图所示,若该几何体的体积为
1
3
,则该几何体的俯视图可以是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,如果菱形OABC的边长为2,点A在x轴上,则菱形内(不含边界)整点(横纵坐标都是整数的点)个数的取值集合是(  )
A、{1,2}
B、{1,2,3}
C、{0,1,2}
D、{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

某堆雪在融化过程中,其体积V(单位:m3)与融化时间t(单位:h)近似满足函数关系:V(t)=H(10-
1
10
t)3
(H为常数),其图象如图所示.记此堆雪从融化开始到结束的平均融化速度为
.
v
(m3/h)
.那么瞬时融化速度等于
.
v
(m3/h)
的时刻是图中的(  )
A、t1
B、t2
C、t3
D、t4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=logb(x-a)(b>0且b≠1)的图象如图所示,那么函数y=a+sinbx的图象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

同步练习册答案