A. | 0 | B. | -2 | C. | 2 | D. | -3 |
分析 根据题意画出图形,结合图形,利用中线的性质表示出向量$\overrightarrow{AE}$与$\overrightarrow{CF}$,求出它们的数量积即可.
解答 解:如图所示,
棱长为2的正四面体ABCD中,E,F分别是BC,AD的中点,
则$\overrightarrow{AE}$$•\overrightarrow{CF}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\frac{1}{2}$($\overrightarrow{CA}$+$\overrightarrow{CD}$)
=$\frac{1}{4}$($\overrightarrow{AB}$•$\overrightarrow{CA}$+$\overrightarrow{AB}$•$\overrightarrow{CD}$+$\overrightarrow{AC}$•$\overrightarrow{CA}$+$\overrightarrow{AC}$•$\overrightarrow{CD}$)
=$\frac{1}{4}$(2×2×cos120°+2×2×2×cos90°+2×2×2×cos180°+2×2×cos120°)
=-3.
故选:D.
点评 本题考查了空间向量的线性表示与数量积应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{a}$<$\frac{1}{b}$ | B. | a2>ab | C. | $\frac{1}{{a{b^2}}}$>$\frac{1}{{{a^2}b}}$ | D. | a2>b2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-$\frac{2π}{3}$,0) | B. | ($\frac{2π}{3}$,0) | C. | ($\frac{π}{12}$,0) | D. | (-$\frac{π}{6}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com