精英家教网 > 高中数学 > 题目详情

【题目】近几年,电商行业的蓬勃发展带动了快递业的迅速增长,快递公司揽收价格一般是采用“首重+续重”的计价方式.首重是指最低的计费重量,续重是指超过首重部分的计费重量,不满一公斤按一公斤计费.某快递网点将快件的揽收价格定为首重(不超过一公斤)8元,续重2/公斤(例如,若一个快件的重量是0.6公斤,按8元计费;若一个快件的重量是1.4公斤,按元计费).根据历史数据,得到该网点揽收快件重量的频率分布直方图如下图所示

1)根据样本估计总体的思想,将频率视作概率,求该网点揽收快件的平均价格;

2)为了获得更大的利润,该网点对“一天中收发一件快递的平均成本(单位:元)与当天揽收的快递件数(单位:百件)之间的关系”进行调查研究,得到相关数据如下表:

每天揽收快递件数(百件)

2

3

4

5

8

每件快递的平均成本(元)

5.6

4.8

4.4

4.3

4.1

根据以上数据,技术人员分别根据甲、乙两种不同的回归模型,得到两个回归方程:

方程甲:,方程乙:.

①为了评价两种模型的拟合效果,根据上表数据和相应回归方程,将以下表格填写完整(结果保留一位小数),分别计算模型甲与模型乙的残差平方和,并依此判断哪个模型的拟合效果更好(备注:称为相应于点的残差,残差平方和

每天揽收快递件数/百件

2

3

4

5

8

每天快递的平均成本/

5.6

4.8

4.4

4.3

4.1

模型甲

预报值

5.2

5.0

4.8

残差

0.2

0.4

模型乙

预报值

5.5

4.8

4.5

预报值

0

0.1

②预计该网点今年625日(端午节)一天可以揽收1000件快递,试根据①中确定的拟合效果较好的回归模型估计该网点当天的总利润(总利润=(平均价格-平均成本)×总件数).

【答案】1元(2)①填表见解析;;模型乙的拟合效果较好②

【解析】

1)根据频率分布直方图得出快件价格的频率分布表,再计算平均价格;

2)①分别把代入两模型方程,计算预报值和残差平方和;

②把代入回归方程,得出平均成本,再计算利润.

解:(1)根据揽收快件重量的频率分布直方图,得到其价格的频率分布表如下:

价格

8

10

12

14

16

频率

0.45

0.25

0.15

0.1

0.05

所以平均价格为

.

2)①表中数据填写如下:

每天揽收快递件数/百件

2

3

4

5

8

每件快递的平均成本/

5.6

4.8

4.4

4.3

4.1

模型甲

预报值

5.2

5.0

4.8

4.6

4.0

残差

0.2

0.4

0.3

模型乙

预报值

5.5

4.8

4.5

4.3

4.0

残差

0

0.1

0

计算可得:

.

因为,所以模型乙的拟合效果较好.

②模型乙的回归方程为

当一天揽收件数为1000时,则收发一件快递的平均成本为

可以估计该网点当天的总利润为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正四棱锥PABCD的底面边长为2,侧棱长为2,过点A作一个与侧棱PC垂直的平面α,则平面α被此正四棱锥所截的截面面积为_____,平面α将此正四棱锥分成的两部分体积的比值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别为,点在椭圆上,直线与椭圆的另一个交点分别为.

1)若点坐标为,且,求椭圆的方程;

2)设,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线过点,倾斜角为

1)求曲线的直角坐标方程与直线l的参数方程;

2)设直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年全球爆发新冠肺炎,人感染了新冠肺炎病毒后常见的呼吸道症状有:发热、咳嗽、气促和呼吸困难等,严重时会危及生命.随着疫情的发展,自202025日起,武汉大面积的爆发新冠肺炎,政府为了及时收治轻症感染的群众,逐步建立起了14家方舱医院,其中武汉体育中心方舱医院从212日开舱至38日闭仓,累计收治轻症患者1056人.据部分统计该方舱医院从226日至32日轻症患者治愈出仓人数的频数表与散点图如下:

日期

2.26

2.27

2.28

2.29

3.1

3.2

序号

1

2

3

4

5

6

出仓人数

3

8

17

31

68

168

根据散点图和表中数据,某研究人员对出仓人数与日期序号进行了拟合分析.从散点图观察可得,研究人员分别用两种函数①分析其拟合效果.其相关指数可以判断拟合效果,R2越大拟合效果越好.已知的相关指数为

1)试根据相关指数判断.上述两类函数,哪一类函数的拟合效果更好?(注:相关系数与相关指数R2满足,参考数据表中

2根据(1)中结论,求拟合效果更好的函数解析式;(结果保留小数点后三位)

33日实际总出仓人数为216人,按①中的回归模型计算,差距有多少人?

(附:对于一组数据,其回归直线为

相关系数

参考数据:

3.5

49.17

15.17

3.13

894.83

19666.83

10.55

13.56

3957083

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y2=4x的焦点的直线l与抛物线交于AB两点,设点M30.若△MAB的面积为,则|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周率π是数学中一个非常重要的数,历史上许多中外数学家利用各种办法对π进行了估算.现利用下列实验我们也可对圆周率进行估算.假设某校共有学生N人,让每人随机写出一对小于1的正实数ab,再统计出ab1能构造锐角三角形的人数M,利用所学的有关知识,则可估计出π的值是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数处的切线斜率为2,试求a的值及此时的切线方程;

2)若函数在区间(其中为自然对数的底数)上有唯一的零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了更好地贯彻党的五育并举的教育方针,某市要对全市中小学生体能达标情况进行了解,决定通过随机抽样选择几个样本校对学生进行体能达标测试,并规定测试成绩低于60分为不合格,否则为合格,若样本校学生不合格人数不超过其总人数的5%,则该样本校体能达标为合格.已知某样本校共有1000名学生,现从中随机抽取40名学生参加体能达标测试,首先将这40名学生随机分为甲、乙两组,其中甲乙两组学生人数的比为3:2,测试后,两组各自的成绩统计如下:甲组的平均成绩为70,方差为16,乙组的平均成绩为80,方差为36.

1)估计该样本校学生体能测试的平均成绩;

2)求该样本校40名学生测试成绩的标准差s

3)假设该样本校体能达标测试成绩服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,利用估计值估计该样本校学生体能达标测试是否合格?

(注:1.本题所有数据的最后结果都精确到整数;2若随机变量z服从正态分布,则

查看答案和解析>>

同步练习册答案