精英家教网 > 高中数学 > 题目详情

【题目】某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:

(1)请根据表中提供的数据,用相关系数说明的线性相关程度;(结果保留小数点后两位,参考数据:

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力.

参考公式:;相关系数

【答案】(1)见解析;(2);(3)4

【解析】分析:(1)计算出相关系数即得;

(2)根据所给公式计算出回归直线方程的系数可得回归直线方程;

(3)代入(2)中回归直线方程可得预测值.

详解:(1)6×2+8×3+10×5+12×6=158,

=9,=4,

62+82+102+122=344.

,线性相关性非常强.

(2)158, =9,=4,344.

=0.7,=4-0.7×9=-2.3,

故线性回归方程为=0.7x-2.3.

(3)由(2)中线性回归方程知,当x=9时,=0.7×9-2.3=4,故预测记忆力为9的同学的判断力约为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.
(Ⅰ)求异面直线A1B与AC1所成角的余弦值;
(Ⅱ)求二面角B﹣A1D﹣A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,分别是的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面平面

(Ⅲ)在图中作出点在底面的正投影,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

>300

空气质量

轻度污染

中度污染

重度污染

严重污染

下图是某市10月1日—20日AQI指数变化趋势:

下列叙述错误的是

A. 这20天中AQI指数值的中位数略高于100

B. 这20天中的中度污染及以上的天数占

C. 该市10月的前半个月的空气质量越来越好

D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)是否存在非负实数a,使得在上的最大值为?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,在直角梯形中, 为线段 的中点

(1)求证:平面平面

(2)在线段 上是否存在点 ,使得平面 ?若存在,求出点 的位置;若不存在,请说明理由

(3)若中点,,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x﹣1)的图象关于点(1,0)对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),若a=(30.3)f(30.3),b=(logπ3)f(logπ3),c=(log3 )f(log3 ),则 a,b,c的大小关系是(
A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ex﹣2x﹣a在R上有两个零点,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l经过点A(﹣1,0),其倾斜角是α,以原点O为极点,以x轴的非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程是ρ2=6ρcosθ﹣5.
(Ⅰ)若直线l和曲线C有公共点,求倾斜角α的取值范围;
(Ⅱ)设B(x,y)为曲线C任意一点,求 的取值范围.

查看答案和解析>>

同步练习册答案