精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中.

(Ⅰ)当时,求函数的极值;

(Ⅱ)当时,证明:函数不可能存在两个零点.

【答案】(1) 存在极小值不存在极大值.

(2)证明见解析.

【解析】分析:(Ⅰ)由题意得,因为,所以,进而得出函数的单调性,求解函数的极值;

(Ⅱ)由方程,得,由,得,得出函数的单调性与极值,即可判定函数至多在区间存在一个零点,得出结论.

详解:(Ⅰ)解:求导,得

因为,所以

所以当时,,函数为减函数;

时,,函数为增函数.

故当时,存在极小值不存在极大值.

(Ⅱ)证明:解方程,得.

,得.

随着的变化,的变化情况如下表:

1

+

0

-

0

+

极大值

极小值

所以函数上单调递增,在上单调递减.

又因为

所以函数至多在区间存在一个零点;

所以,当时函数不可能存在两个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)若上单调递增,求正数的最大值;

2)若函数内恰有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足a1=2,an1an=3·22n1.

(1)求数列{an}的通项公式;

(2)bnnan,求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知a1=1, ,n∈N*
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为 ,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0 , y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF||BF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),的部分图象如图所示,且,则( )

A. 6 B. 4 C. -4 D. -6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,对任意,点都在函数 的图象上.

1)求数列的通项公式;

2)若数列,求数列的前项和

3)已知数列满足,若对任意,存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求实数a的值;

(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县经济最近十年稳定发展,经济总量逐年上升,下表是给出的部分统计数据:

序号

2

3

4

5

年份

2008

2010

2012

2014

2016

经济总量(亿元)

236

246

257

275

286

(1)如上表所示,记序号为,请直接写出的关系式;

(2)利用所给数据求经济总量与年份之间的回归直线方程

(3)利用(2)中所求出的直线方程预测该县2018年的经济总量.

附:对于一组数据

其回归直线的斜率和截距的最小二乘估计分别为:

.

查看答案和解析>>

同步练习册答案