精英家教网 > 高中数学 > 题目详情
16.已知定义在R上的函数y=f(x)对任意的x都满足f(x+1)=-f(x),当-1≤x<0 时,f(x)=x3,若函数g(x)=f(x)-loga|x|至少6个零点,则a的取值范围是(0,$\frac{1}{5}$]∪(5,+∞).

分析 函数g(x)=f(x)-loga|x|的零点个数,即函数y=f(x)与y=log5|x|的交点的个数,由函数图象的变换,分别做出y=f(x)与y=loga|x|的图象,结合图象可得loga5<1 或 loga5≥-1,由此求得a的取值范围.

解答 解:根据题意,函数g(x)=f(x)-loga|x|的零点个数,
即函数y=f(x)与y=loga|x|的交点的个数;
f(x+2)=f(x),函数f(x)是周期为2的周期函数,
又由当-1<x≤1时,f(x)=x3
据此可以做出f(x)的图象,

y=loga|x|是偶函数,当x>0时,y=logax,
则当x<0时,y=loga(-x),做出y=loga|x|的图象,
结合图象分析可得:
要使函数y=f(x)与y=loga|x|至少有6个交点,
则 loga5<1 或 loga5≥-1,解得 a≥5,或 0<a≤$\frac{1}{5}$,
故(0,$\frac{1}{5}$]∪(5,+∞),
故答案为:(0,$\frac{1}{5}$]∪(5,+∞)

点评 本题考查函数图象的变化与运用,涉及函数的周期性,对数函数的图象等知识点,关键是作出函数的图象,由此分析两个函数图象交点的个数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年湖南益阳市高二9月月考数学(文)试卷(解析版) 题型:填空题

中,,且,则____________

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a>0,且ab=4,那么a+b的最小值是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(Ⅰ)已知α∈($\frac{π}{2}$,π),且4sinα=-3cosα,求$\frac{{cos(α+\frac{π}{4})}}{sin2α}$的值.
(Ⅱ)已知$\frac{π}{2}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin2α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.命题“?x∈R,$sin(x+\frac{π}{3})≤0$”的否定是$?x∈R,\;\;sin(x+\frac{π}{3})>0$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知p:(x+3)(x+4)=0,q:x+3=0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.
(1)当DG=2时,求证:∠EHG=90°;
(2)在(1)的条件下,求△FCG的面积;
(3)设DG=x,用含x的代数式表示△FCG的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知对数函数f(x)过点(2,4),则f($\root{4}{2}$)的值为(  )
A.-1B.$\frac{1}{2}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知方程x2+xlog26+log23=0的两根为α和β,求($\frac{1}{4}$)α+($\frac{1}{4}$)β的值.

查看答案和解析>>

同步练习册答案