分析 函数g(x)=f(x)-loga|x|的零点个数,即函数y=f(x)与y=log5|x|的交点的个数,由函数图象的变换,分别做出y=f(x)与y=loga|x|的图象,结合图象可得loga5<1 或 loga5≥-1,由此求得a的取值范围.
解答 解:根据题意,函数g(x)=f(x)-loga|x|的零点个数,
即函数y=f(x)与y=loga|x|的交点的个数;
f(x+2)=f(x),函数f(x)是周期为2的周期函数,
又由当-1<x≤1时,f(x)=x3,
据此可以做出f(x)的图象,
y=loga|x|是偶函数,当x>0时,y=logax,
则当x<0时,y=loga(-x),做出y=loga|x|的图象,
结合图象分析可得:
要使函数y=f(x)与y=loga|x|至少有6个交点,
则 loga5<1 或 loga5≥-1,解得 a≥5,或 0<a≤$\frac{1}{5}$,
故(0,$\frac{1}{5}$]∪(5,+∞),
故答案为:(0,$\frac{1}{5}$]∪(5,+∞)
点评 本题考查函数图象的变化与运用,涉及函数的周期性,对数函数的图象等知识点,关键是作出函数的图象,由此分析两个函数图象交点的个数,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com