精英家教网 > 高中数学 > 题目详情
数列{an}的通项公式为an=-2n+5.证明:{an}是等差数列.
考点:等差关系的确定
专题:等差数列与等比数列
分析:直接由等差数列的定义,即an+1-an为常数证明.
解答: 证明:由an=-2n+5,得an+1=-2(n+1)+5,
则an+1-an=-2(n+1)+5-(-2n+5)=-2,为常数.
∴数列{an}是公差为-2的等差数列.
点评:本题考查了等差数列的定义,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=kx2+lnx,若f(x)<0在函数定义域内恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A在直线x+2y-1=0上,点B在直线x+2y+3=0上,线段AB的中点为P(x0,y0),且满足y0>x0+2,则
y0
x0
的取值范围为(  )
A、(-
1
2
,-
1
5
B、(-∞,-
1
5
]
C、(-
1
2
,-
1
5
]
D、(-
1
2
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

由-1,0,1,2,3这五个数中选三个不同的数组成二次函数y=ax2+bx+c的系数.
(1)开口向上的抛物线有几条?
(2)开口向下的抛物线有几条?
(3)开口向上且不过原点的抛物线有多少条?
(4)与x轴的正、负半轴各有一个交点的抛物线有多少条?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P点在线段P1P2上,P1P2=5,P1P=1,点P分有向线段
P1P2
的比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a+
(-x2-4x)
和g(x)=
4x
3
+1,已知当x∈[-4,0]时,恒有f(x)≤g(x),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数解,那么a、b、c中至少有一个偶数”时,下列假设正确的是(  )
A、假设a、b、c都是偶数
B、假设a、b、c都不是偶数
C、假设a、b、c至少有一个奇数
D、假设a、b、c至多有一个偶数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点 P为双曲线
x2
16
-
y2
9
=1右支上一点,点F1,F2分别为双曲线的左、右焦点,M为△PF1F2的内心,若S△PMF1=S△PMF2+8,则△MF1F2的面积为(  )
A、2
7
B、10
C、8
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知扇形的圆心角所对的弦长为2,圆心角为2弧度.
(1)求这个圆心角所对的弧长;
(2)求这个扇形的面积.

查看答案和解析>>

同步练习册答案