精英家教网 > 高中数学 > 题目详情
设函数f(x)=
21-x,x≤1
1-log2x,x>1
,则f[f(4)]=(  )
A、2B、4C、8D、16
考点:对数的运算性质
专题:函数的性质及应用
分析:本题可以根据不同的条件选择不同的解析式进行求值,得到本题结论.
解答: 解:∵函数f(x)=
21-x,x≤1
1-log2x,x>1

∴f(4)=1-log24=1-2=-1,
f[f(4)]=f(-1)=21-(-1)=22=4.
故选B.
点评:本题考查的是分段函数的函数值求法,本题难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在一个盒子中装有6枝圆珠笔,其中3枝一等品,2枝二等品和1枝三等品,从中任取3枝,求:
(Ⅰ)取出的3枝中恰有1枝一等品的概率;
(Ⅱ)取出的3枝中一、二、三等品各一枝的概率;
(Ⅲ)取出的3枝中没有三等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高级职称教师104人,中级职称教师46人,其他教师若干人.为了了解该校教师的工资收入情况,若按分层抽样从该校的所有教师中抽取42人进行调查,已知从其它教师中共取了12人,则该校共有教师
 
人.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂修建一个长方体无盖储水池,其容积为1800立方米,深度为3米,池底每平方米的造价为150元,池壁每平方米的造价为120元,设池底长方形的长为x米.
(1)求底面积,并用含x的表达式表示池壁面积;
(2)怎样设计水池能使总造价最低?最低造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一次函数f(x)满足2f(2)-3f(1)=5,2f(0)-f(-1)=1.
(1)求函数f(x)的解析式;
(2)若函数g(x)=
f(x)-x2
,求函数g(x)的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对于任意的x∈R,都满足f(-x)=f(x),且对任意的a,b∈(-∞,0],当a≠b时,都有
f(a)-f(b)
a-b
<0,若f(m+1)<f(2m-1),则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆M过坐标原点O且圆心在曲线y=
3
x
上.
(Ⅰ)若圆M分别与x轴、y轴交于点A、B(不同于原点O),求证:△AOB的面积为定值;
(Ⅱ)设直线l:y=-
3
3
x+4
与圆M 交于不同的两点C,D,且|OC|=|OD|,求圆M的方程;
(Ⅲ)设直线y=
3
与(Ⅱ)中所求圆M交于点E、F,P为直线x=5上的动点,直线PE,PF与圆M的另一个交点分别为G,H,求证:直线GH过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知I为实数集,P={x|x2-2x<0},Q={y|y=2x+1,x∈R},则P∩(∁IQ)=(  )
A、{x|0<x<1}
B、{x|0<x≤1}
C、{x|x<1}
D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-e-x-2x,x∈R
(1)证明f(x)为奇函数,并在R上为增函数;
(2)若关于x的不等式f(x)≤mex-2x+2m-3在(0,+∞)上恒成立,求实数m的取值范围;
(3)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值.

查看答案和解析>>

同步练习册答案