精英家教网 > 高中数学 > 题目详情

【题目】记点到图形上每一个点的距离的最小值称为点到图形的距离,那么平面内到定圆的距离与到定点的距离相等的点的轨迹不可能是

A.B.椭圆C.双曲线的一支D.直线

【答案】D

【解析】

根据题意P到图形C上每一个点的距离的最小值称为点P到图形C的距离,将平面内到定圆C的距离转化为到圆上动点的距离,再分点A现圆C的位置关系,结合圆锥曲线的定义即可解决.

排除法:设动点为Q

1.当点A在圆内不与圆心C重合,连接CQ并延长,交于圆上一点B,由题意知QB=QA

QB+QC=R,所以QA+QC=R,即Q的轨迹为一椭圆;如图。

2.如果是点A在圆C外,由QCR=QA,得QCQA=R,为一定值,即Q的轨迹为双曲线的一支;

3.当点A与圆心C重合,要使QB=QA,则Q必然在与圆C的同心圆,即Q的轨迹为一圆;

则本题选D.

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某人上午7时乘船出发,以匀速海里/小时港前往相距50海里的港,然后乘汽车以匀速千米/小时()自港前往相距千米的市,计划当天下午4到9时到达市.设乘船和汽车的所要的时间分别为小时,如果所需要的经费 (单位:元)

(1)试用含有的代数式表示

(2)要使得所需经费最少,求的值,并求出此时的费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由两个椭圆和椭圆组成,当成等比数列时,称曲线猫眼曲线”.

1)若猫眼曲线过点,且的公比为,求猫眼曲线的方程;

2)对于题(1)中的求猫眼曲线,任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为M,交椭圆所得弦的中点为N,求证:为与无关的定值;

3)若斜率为的直线为椭圆的切线,且交椭圆于点为椭圆上的任意一点(点与点不重合),求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设单调函数的定义域为,值域为,如果单调函数使得函数的值域也是,则称函数是函数的一个保值域函数.已知定义域为的函数,函数互为反函数,且的一个保值域函数”,的一个保值域函数,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是由)个整数按任意次序排列而成的数列,数列满足),按从大到小的顺序排列而成的数列,记.

1)证明:当为正偶数时,不存在满足)的数列.

2)写出),并用含的式子表示.

3)利用,证明:.(参考:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,且(其中e是自然对数的底数).

(Ⅰ)若,求的单调区间;

(Ⅱ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,分别是棱的中点,分别是线段上的点,则与平面平行的直线有(

A.0B.1C.2D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

1)设,判断上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;

2)若函数上是以为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非空集合是由一些函数组成,满足如下性质:对任意均存在反函数,且对任意,方程均有解;对任意,若函数为定义在上的一次函数,则.

1)若,均在集合中,求证:函数

2)若函数)在集合中,求实数的取值范围;

3)若集合中的函数均为定义在上的一次函数,求证:存在一个实数,使得对一切,均有.

查看答案和解析>>

同步练习册答案