精英家教网 > 高中数学 > 题目详情

【题目】下列有关命题的说法错误的是(

A.“p∨q”为假命题,则pq均为假命题

B.“x=1”“x≥1”的充分不必要条件

C.“sinx=的必要不充分条件是“x=

D.若命题px0∈Rx02≥0,则命题¬px∈Rx20

【答案】C

【解析】

试题根据复合命题真假判断的真值表,可判断A;根据充要条件的定义,可判断BC,根据特称命题的否定,可判断D

解:若“p∨q”为假命题,则pq均为假命题,故A正确;

“x=1”时,“x≥1”成立,“x≥1”时,“x=1”不一定成立,故“x=1”“x≥1”的充分不必要条件,故B正确;

“sinx=时,“x=不一定成立,“x=时,“sinx=成立,故“sinx=的充分不必要条件是“x=,故C错误;

若命题px0∈Rx02≥0,则命题¬px∈Rx20,故D正确;

故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD平面CDEF,BAD=CDA=90,M是线段AE上的动点.

(1)试确定点M的位置,使AC平面DMF,并说明理由;

(2)(1)的条件下,求平面MDF将几何体ADE-BCF分成的两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一年度未发生有责任道路交通事故

下浮

上两年度未发生有责任道路交通事故

下浮

上三年度未发生有责任道路交通事故

下浮

上一个年度发生一次有责任不涉及死亡的道路交通事故

上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故

上浮

上一个年度发生有责任交通死亡事故

上浮

某机构为了解某一品牌普通座以下私家车的投保情况,随机抽取了辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

以这辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损元,一辆非事故车盈利元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是圆上的一动点,点在直线上线段的垂直平分线交直线于点

1)若点的轨迹为椭圆,则求的取值范围;

2)设时对应的椭圆为为椭圆的右顶点,直线交于两点,若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,汉诺塔问题是指有3根杆子ABCB杆上有若干碟子,把所有碟子从B杆移到A杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面.把B杆上的4个碟子全部移到A杆上,最少需要移动( )次. ( )

A12 B15 C17 D19

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:

①净三种个体按的比例分层抽样调查,如果抽取的个体为9个,则样本容易为30;②一组数据1、2、3、4、5的平均数、众数、中位数相同;③甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲;④已知具有线性相关关系的两个变量满足的回归直线方程为.则每增加1个单位,平均减少2个单位;⑤统计的10个样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在内的频率为0.4其中真命题为( )

A. ①②④B. ②④⑤C. ②③④D. ③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201912月,全国各中小学全体学生都参与了《禁毒知识》的答题竞赛,现从某校高一年级参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为,,.

1)求成绩在的频率,并补全此频率分布直方图;

2)求这次考试成绩的中位数的估计值;

3)若从抽出的成绩在的学生中任选两人,求他们的成绩在同一分组区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,是平面内一动点,可以与点重合.不与重合时,直线的斜率之积为.

1)求动点的轨迹方程;

2)一个矩形的四条边与动点的轨迹均相切,求该矩形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F是椭圆Cab0)的一个焦点,P是椭圆C上的点,圆x2y2与线段PF交于AB两点,若AB三等分线段PF,则椭圆C的离心率为(

A.B.

C.D.

查看答案和解析>>

同步练习册答案