精英家教网 > 高中数学 > 题目详情
3.若点(2,-3)不在不等式组$\left\{\begin{array}{l}x-y≥0\\ x+y-2≤0\\ ax-y-1≤0\end{array}\right.$表示的平面区域内,则实数a的取值范围是(  )
A.(-∞,0)B.(-1,+∞)C.(0,+∞)D.(-∞,-1)

分析 直接利用已知条件判断点与不等式的关系,然后求解即可.

解答 解:点(2,-3)不在不等式组$\left\{\begin{array}{l}x-y≥0\\ x+y-2≤0\\ ax-y-1≤0\end{array}\right.$表示的平面区域内,
可知(2,-3)满足x-y≥0,满足x+y-2≤0,
所以不满足ax-y-1≤0,即2a+3-1>0,解得a>-1.
故选:B.

点评 本题考查线性规划的应用,判断点与不等式的关系是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.(1)若直线l的倾斜角a满足$\frac{π}{4}$≤a≤$\frac{3}{4}$π,则直线l的斜率的范围是(-∞,-1]∪[1,+∞)
(2)若直线l的斜率为$\frac{4}{3}$,而直线m的倾斜角是直线l倾斜角的2倍,则直线m的斜率是$-\frac{24}{7}$
(3)若直线l的倾斜角的正弦是$\frac{\sqrt{3}}{2}$,则直线l的斜率是$±\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设f(x)=xlnx+2015,若f′(x0)=2,则x0=(  )
A.e2B.eC.$\frac{ln2}{2}$D.ln2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.倡导全民阅读是传承文明、更新知识、提高民族素质的基本途径.某调查公司随机调查了1000位成年人一周的平均阅读时间(单位:小时),他们的阅读时间都在[0,20]内,将调查结果按如下方式分成五组:第一组[0,4),第二组[4,8),第三组[8,12),第四组[12,16),第五组[16,20],并绘制了频率分布直方图,如图.假设每周平均阅读时间不少于12小时的人,称为“阅读达人”.
(Ⅰ)求这1000人中“阅读达人”的人数;
(Ⅱ)从阅读时间为[8,20]的成年人中按分层抽样抽取9人做个性研究.从这9人中随机抽取2人,求这2人都不是“阅读达人”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2\sqrt{2}cosxsin(x-\frac{π}{4})+1$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间$[\frac{π}{12},\;\;\frac{π}{6}]$上的最大值与最小值的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sinx=$\frac{4}{5}$,其中0≤x≤$\frac{π}{2}$.
(1)求cosx的值;
(2)求$\frac{cos(-x)}{sin(\frac{π}{2}-x)-sin(2π-x)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若x,y满足约束条件$\left\{\begin{array}{l}{x-3y+1≤0}\\{x+y-3≤0}\\{x-1≥0}\end{array}\right.$,则z=y-x的最大值为(  )
A.-2B.-1C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某同学用五点法画函数$f(x)=Asin(ωx+φ),(ω>0,|φ|<\frac{π}{2})$在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)03-30
(Ⅰ)请将表数据补充完整,并直接写出函数f(x)的解析式;
(Ⅱ)若函数f(x)的单调递增区间;
(Ⅲ)求f(x)在区间$[-\frac{π}{4}\;,\;\frac{π}{6}]$上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆O:x2+y2=4,点M(1,0)圆内定点,过M作两条互相垂直的直线与圆O交于AB、CD,则弦长AC的取值范围[$\sqrt{7}$-1,$\sqrt{7}$+1].

查看答案和解析>>

同步练习册答案