分析 (1)由2Sn=an+1-2n+1+1(n∈N*),可得n≥2时,2Sn-1=an-2n+1,相减变形化为:$\frac{{a}_{n+1}}{{2}^{n+1}}$+1=$\frac{3}{2}(\frac{{a}_{n}}{{2}^{n}}+1)$,即可证明.
(2)bn(3n-an)=$\frac{n+2}{n(n+1)}$,可得bn=$\frac{n+2}{n(n+1)•{2}^{n}}$=$\frac{1}{{2}^{n}}$$(\frac{2}{n}-\frac{1}{n+1})$=$\frac{1}{n•{2}^{n-1}}$-$\frac{1}{(n+1)•{2}^{n}}$.利用“裂项求和”与数列的单调性即可得出.
解答 证明:(1)∵2Sn=an+1-2n+1+1(n∈N*),∴n≥2时,2Sn-1=an-2n+1,相减可得2an=an+1-2n-an,化为:$\frac{{a}_{n+1}}{{2}^{n+1}}$+1=$\frac{3}{2}(\frac{{a}_{n}}{{2}^{n}}+1)$,$\frac{{a}_{1}}{2}$+1=$\frac{3}{2}$,
∴数列{$\frac{{a}_{n}}{{2}^{n}}$+1}为等比数列,首项与公比都为$\frac{3}{2}$.∴$\frac{{a}_{n}}{{2}^{n}}$+1=$(\frac{3}{2})^{n}$,化为:an=3n-2n.
(2)bn(3n-an)=$\frac{n+2}{n(n+1)}$,∴bn=$\frac{n+2}{n(n+1)•{2}^{n}}$=$\frac{1}{{2}^{n}}$$(\frac{2}{n}-\frac{1}{n+1})$=$\frac{1}{n•{2}^{n-1}}$-$\frac{1}{(n+1)•{2}^{n}}$.
∴数列{bn}的前n项和为Tn=$(1-\frac{1}{2×2})$+$(\frac{1}{2×2}-\frac{1}{3×{2}^{2}})$+…+$(\frac{1}{n•{2}^{n-1}}-\frac{1}{(n+1)•{2}^{n}})$=1-$\frac{1}{(n+1)•{2}^{n}}$<1,
∴Tn<1.
点评 本题考查了“裂项求和法”、等比数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{4}$ | B. | -$\frac{1}{3}$ | C. | -$\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=2x | B. | y=$\frac{1}{{x}^{2}}$ | C. | y=ln|x| | D. | y=cosx |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{6}$ | B. | $\frac{9}{2}$ | C. | $\frac{8}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com