精英家教网 > 高中数学 > 题目详情
19.设数列{an}的前n项和为Sn,且2Sn=an+1-2n+1+1(n∈N*),a1=1.
(1)求证:数列{$\frac{{a}_{n}}{{2}^{n}}$+1}为等比数列,并求an
(2)设数列{bn}满足bn(3n-an)=$\frac{n+2}{n(n+1)}$,数列{bn}的前n项和为Tn,求证;Tn<1.

分析 (1)由2Sn=an+1-2n+1+1(n∈N*),可得n≥2时,2Sn-1=an-2n+1,相减变形化为:$\frac{{a}_{n+1}}{{2}^{n+1}}$+1=$\frac{3}{2}(\frac{{a}_{n}}{{2}^{n}}+1)$,即可证明.
(2)bn(3n-an)=$\frac{n+2}{n(n+1)}$,可得bn=$\frac{n+2}{n(n+1)•{2}^{n}}$=$\frac{1}{{2}^{n}}$$(\frac{2}{n}-\frac{1}{n+1})$=$\frac{1}{n•{2}^{n-1}}$-$\frac{1}{(n+1)•{2}^{n}}$.利用“裂项求和”与数列的单调性即可得出.

解答 证明:(1)∵2Sn=an+1-2n+1+1(n∈N*),∴n≥2时,2Sn-1=an-2n+1,相减可得2an=an+1-2n-an,化为:$\frac{{a}_{n+1}}{{2}^{n+1}}$+1=$\frac{3}{2}(\frac{{a}_{n}}{{2}^{n}}+1)$,$\frac{{a}_{1}}{2}$+1=$\frac{3}{2}$,
∴数列{$\frac{{a}_{n}}{{2}^{n}}$+1}为等比数列,首项与公比都为$\frac{3}{2}$.∴$\frac{{a}_{n}}{{2}^{n}}$+1=$(\frac{3}{2})^{n}$,化为:an=3n-2n
(2)bn(3n-an)=$\frac{n+2}{n(n+1)}$,∴bn=$\frac{n+2}{n(n+1)•{2}^{n}}$=$\frac{1}{{2}^{n}}$$(\frac{2}{n}-\frac{1}{n+1})$=$\frac{1}{n•{2}^{n-1}}$-$\frac{1}{(n+1)•{2}^{n}}$.
∴数列{bn}的前n项和为Tn=$(1-\frac{1}{2×2})$+$(\frac{1}{2×2}-\frac{1}{3×{2}^{2}})$+…+$(\frac{1}{n•{2}^{n-1}}-\frac{1}{(n+1)•{2}^{n}})$=1-$\frac{1}{(n+1)•{2}^{n}}$<1,
∴Tn<1.

点评 本题考查了“裂项求和法”、等比数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=xn的图象过点(3,$\sqrt{3}$),则n=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知F1、F2为椭圆C:$\frac{{x}^{2}}{4}$+y2=1的左、右焦点,点P在椭圆C上,且|PF1|-|PF2|=2,则cos∠F1PF2=(  )
A.$\frac{3}{4}$B.-$\frac{1}{3}$C.-$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中正确的个数是(  )
①有两个面平行,其余各面都是平行四边形的几何体叫棱柱;
②若直线l上有无数个点不在平面α内,则l∥α;
③如果直线a,b和平面α满足a∥α,b∥α,那么a∥b;
④如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,则l⊥γ
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知等差数列{an}中,a3=8,a8=3,则该数列的前10项和为(  )
A.55B.45C.35D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,既是偶函数又在(0,+∞)上单调递增的是(  )
A.y=2xB.y=$\frac{1}{{x}^{2}}$C.y=ln|x|D.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=sinx-2cosx,当x=α时f(x)取得最大值,则cosα=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线y=x-2与曲线y2=x所围成的封闭图形的面积为(  )
A.$\frac{1}{6}$B.$\frac{9}{2}$C.$\frac{8}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则截面所在平面与底面所在平面所成的锐二面角的正切值为(  )
A.2B.$\sqrt{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步练习册答案