精英家教网 > 高中数学 > 题目详情
在△ABC中,两个定点A(-3,0)B(3,0),△ABC的垂心H(三角形三条高线的交点)是AB边上高线CD的中点.
(1)求动点C的轨迹方程;
(2)斜率为2的直线l交动点C的轨迹于P、Q两点,求△OPQ面积的最大值(O是坐标原点).
分析:(1)设出动点C的坐标,利用AH⊥BC,kAH•kBC=-1即可求解动点C的轨迹方程;
(2)通过斜率为2的直线l,设出直线方程,利用直线交动点C的轨迹于P、Q两点,联立直线与椭圆的方程组成方程组,求出弦长,利用点到直线的距离,表示△OPQ面积,利用基本不等式求出面积的最大值.
解答:解:(1)设动点C(x,y)则D(x,0).因为H是CD的中点,故H(x,
y
2
)

因为AH⊥BC所以kAH•kBC=-1故
y
2
x+3
y
x-3
=-1

整理得动点C的轨迹方程
x2
9
+
y2
18
=1(y≠0)

(2)设l:y=2x+m并代入
x2
9
+
y2
18
=1(y≠0)
得6x2+4mx+m2-18=0,
∵△=(4m)2-4×6×(m2-18)>0
∴54-m2>0  
 即m∈(-3
6
,3
6
)

 |PQ|=
(1+22)[(-
4m
6
)
2
-4•
m2-18
6
]
=
10
3
54-m2

又原点O到直线l的距离为d=
|m|
5

∴S△OPQ=
1
2
×
10
3
×
54-m2
×
|m|
5
=
2
6
(54-m2)m2
2
6
×
54-m2+m2
2
=
9
2
2
          
当且仅当54-m2=m2m=±3
3
时等号成立,
故△OPQ面积的最大值为
9
2
2
点评:本题考查曲线轨迹方程的求法,直线与圆锥曲线的关系,弦长公式的应用,点到直线的距离,三角形的面积公式与基本不等式的应用,考查计算能力,转化思想的应用,注意轨迹方程中不满足题意的点需要去掉.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a=xcm,b=2cm,B=45°,若用正弦定理解此三角形时有两个解,则x的取值范围是
(2,2
2
)
(2,2
2
)

查看答案和解析>>

科目:高中数学 来源:三点一测丛书 高中数学 必修5 (江苏版课标本) 江苏版课标本 题型:022

有下列四个命题:①△ABC中,A>Bcos2A<cos2B;②在△ABC中,sinA+sinB>cosA+cosB;③在△ABC中,若2cosBsinA=sinC,则△ABC-定是等腰三角形;④设A、B是钝角三角形ABC的两个锐角,则其中正确命题为________.

查看答案和解析>>

科目:高中数学 来源:江西省临川二中、新余四中2012届高三第一次联考数学文科试题 题型:044

在△ABC中,a,b,c分别为角A、B、C所对的边,且满足

(1)求A的大小;

(2)现给出三个条件:①a=2;②B=45°;③C=b.试从中选出两个可以确定△ABC的条件,定出你的选择,并以此为依据求△ABC的面积(只需一个方案,选多种方案以第一种记分)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在△ABC中,a=xcm,b=2cm,B=45°,若用正弦定理解此三角形时有两个解,则x的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△ABC中,a=xcm,b=2cm,B=45°,若用正弦定理解此三角形时有两个解,则x的取值范围是______.

查看答案和解析>>

同步练习册答案