精英家教网 > 高中数学 > 题目详情
15.已知(xlgx+y)n的展开式的末三项的二项式系数之和是22,中间一项为20000y3,求x的值.

分析 由条件求得n=6,利用通项公式求得${C}_{6}^{3}$•(xlgx3•y3=20000y3,可得 xlgx=10,即 (lgx)2=1,由此求得x的值.

解答 解:由题意可得${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$=22,求得n=6,
故中间一项为T4=${C}_{6}^{3}$•(xlgx3•y3,再根据中间一项为20000y3
可得 ${C}_{6}^{3}$•(xlgx3•y3=20000y3,∴xlgx=10,即 (lgx)2=1,求得x=10或x=$\frac{1}{10}$.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.a,b,c分别表示三条直线,M表示平面,给出下列四个命题:①若a∥M,b∥M,则a∥b;②若b?M,a∥b,则a∥M;③若a⊥c,b⊥c,则a∥b;④若a⊥b,a⊥M,则b∥M;⑤若a?M,b∥M,a∥b,则a∥M
其中正确命题的有⑤(只填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.倾斜角为$\frac{π}{4}$的直线l与抛物线y2=2px(p>0)有公共点(1,2).求:
(1)抛物线的方程;
(2)直线l的方程;
(3)抛物线的焦点到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.任意作一个向量$\overrightarrow{a}$,请画出向量$\overrightarrow{b}$=-2$\overrightarrow{a}$,$\overrightarrow{c}$=$\overrightarrow{a}$-$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点A(-2,1),B(3,-1)关于直线l对称,且点(2,$\frac{3}{2}$)在直线l上,则直线l的方程是2x-2y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.cos(8π-α)=$\frac{\sqrt{5}}{3}$,α∈[-$\frac{π}{2}$,0],则sin(11π+α)为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=sin2(x-$\frac{π}{3}$)+2acos(x+$\frac{π}{6}$).
(1)若a=1,且α是第三象限角,f(α)=-$\frac{5}{9}$,求tan(α-$\frac{π}{3}$)的值;
(2)若y=f(x)在x∈R上有最小值-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.${C}_{3}^{0}$+${C}_{4}^{1}$+${C}_{5}^{2}$+${C}_{6}^{3}$+…+${C}_{2013}^{2010}$的值为(  )
A.${C}_{2013}^{3}$B.${C}_{2014}^{3}$C.${C}_{2014}^{4}$D.${C}_{2013}^{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有5个红球,4个白球,这些球除颜色外完全相同,现一次从中摸出5个球,若摸到4个红球1个白球就中一等奖,求中一等奖的概率.

查看答案和解析>>

同步练习册答案