精英家教网 > 高中数学 > 题目详情
8.已知点P为△ABC所在平面内一点,|$\overrightarrow{CA}$|=|$\overrightarrow{CB}$|=1且$\overrightarrow{CP}$=$\overrightarrow{CA}$+$\overrightarrow{CB}$,则点P在(  )
A.△ABC内心上B.直线AB上C.△ABC垂心上D.∠ACB的平分线上

分析 根据向量的加法的几何意义得出:四边形PACB为菱形,利用菱形的几何性质判断即可.

解答 解:∵|$\overrightarrow{CA}$|=|$\overrightarrow{CB}$|=1且$\overrightarrow{CP}$=$\overrightarrow{CA}$+$\overrightarrow{CB}$,
∴根据向量的加法的几何意义得出:四边形PACB为菱形,
故选:D

点评 本题考察了向量的加法的几何意义,属于简单问题,难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数y=$\frac{1}{\sqrt{sin2x}}$的定义域为(kπ,kπ+$\frac{π}{2}$)(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在棱长为1的正方体ABCD-A1B1C1D1中,E,F,P分别为棱DD1,CD,B1C的中点.求四面体B-PEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.y=2sin2x+2sinx+2的值域为[$\frac{3}{2}$,6],当y取最大值时,x=$\frac{π}{2}$+2kπ,k∈Z;当y取最小值时,x=$-\frac{π}{6}$+2kπ,k∈Z,或$-\frac{5}{6}$+2kπ,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.①(10)-2>(10)-3(用<、>或=符号填空)
②log22=log55(用<、>或=符号填空)
③sin$\frac{π}{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点A(3,4,4),B(-2,-1,5),C(4,5,0),若点D在线段AC上,且△ABD的面积是△ABC的面积的$\frac{1}{3}$,求线段BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2sin($\frac{2π}{3}$x+φ),且f($\frac{1}{2}$)=1,k∈Z,求函数f(x)的最小正周期,并求f($\frac{1}{2}$+6k)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数y=f(x),f′(1)=$\frac{\sqrt{3}}{6}$,则函数y=f(2x-1)在x=1处的切线的倾斜角为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{1}{2}$sin$\frac{1}{2}$x的最小正周期是4π.

查看答案和解析>>

同步练习册答案