精英家教网 > 高中数学 > 题目详情
正四面体的四个顶点都在表面积为36π的一个球面上,则这个正四面体的高等于______.
正四面体内接于球,则相应的一个正方体内接于球
设正方体为ABCD-A1B1C1D1,则正四面体为ACB1D1
设球半径为R,则4πR2=36π,∴R=3
∴AC1=6,∴AD1=2
6

设底面ACB1中心为O,则AO=2
2

∴正四面体的高D1O=
AD12-AO2
=
24-8
=4
故答案为:4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知正方体ABCD-A1B1C1D1的棱长为1,动点P在正方体ABCD-A1B1C1D1表面上运动,且PA=r(0<r<
3
),记点P的轨迹的长度为f(r),则f(
1
2
)
=______.(填上所有可能的值).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知长方体ABCD-A′B′C′D′,AB=2,AA′=1,直线BD与平面AA′B′B所成角为30°,E为A′B′的中点.
(1)求异面直线AC与BE所成的角;
(2)求A点到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正三棱柱的每一条棱长都是a,则经过底面一边和相对侧棱的一个端点的截面(即图中△ACD)的面积为(  )
A.
7
4
a2
B.
7
2
a2
C.
6
3
a2
D.
7
a2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,A∉平面α,AB、AC是平面α的两条斜线,O是A在平面α内的射影,AO=4,OC=
3
,BO⊥OC,∠OBA=30°,则C到AB的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在平行六面体ABCD-A1B1C1D1中,底面是边长为1的正方形,若A1AB=∠A1AD=600,且A1A=3,则A1C的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直四棱柱ABCD-A1B1C1D1口,ABCD,AD⊥AB,AB=2,AD=
2
,AA1=3,E为CD7一点,DE=1,EC=3
(1)证明:BE⊥平面BB1C1C;
(2)求点B1到平面EA1C1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三角形ABC中,AC=BC=
2
2
AB
,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点.
(Ⅰ)求证:GF底面ABC;
(Ⅱ)求证:AC⊥平面EBC;
(Ⅲ)求几何体ADEBC的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体ABCD-A1B1C1D1中,AA1=
2
,AB=BC=2,O是底面对角线的交点.
(Ⅰ)求证:B1D1平面BC1D;
(Ⅱ)求证:A1O⊥平面BC1D;
(Ⅲ)求三棱锥A1-DBC1的体积.

查看答案和解析>>

同步练习册答案