精英家教网 > 高中数学 > 题目详情

【题目】如图,从参加环保知识竞赛的学生中抽出40名,将其成绩(均为整数)整理后画出的频率分布直方图如下:

观察图形,回答下列问题:

(1)估计这次环保知识竞赛成绩的中位数;

(2)从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率?

【答案】(1) 70 (2)

【解析】试题分析:(1)根据频率分步直方图的意义,计算可得40~50、50~60、60~70、70~80、90~100这5组的频率,由频率的性质可得80~90这一组的频率,进而由频率、频数的关系,计算可得答案;根据频率分步直方图中计算平均数、众数、中位数的方法,计算可得答案;(2)记“取出的2人在同一分数段”为事件E,计算可得80~90之间与90~100之间的人数,并设为a、b、c、d,和A、B,列举可得从中取出2人的情况,可得其情况数目与取出的2人在同一分数段的情况数目,由等可能事件的概率公式,计算可得答案.

试题解析(1)中位数为70

(2)取出的2人在同一分数段为事件E,因为8090之间的人数为40×01=4,设为abcd90100之间有40×005=2人,设为AB,从这6人中选出2人,有(ab)、(ac)、(ad)、(aA)、(aB)、(bc)、(bd)、(bA)、(bB)、(cd)、(cA)、(cB)、(dA)、(dB)、(AB),共15个基本事件,其中事件A包括(ab)、(ac)、(ad)、(bc)、(bd)、(cd)、(AB),共7个基本事件,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 是椭圆上的两点,椭圆的离心率为,短轴长为2,已知向量 ,且 为坐标原点.

(1)若直线过椭圆的焦点,( 为半焦距),求直线的斜率的值;

(2)试问: 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(0,+∞),f(2)=1,f(xy)=f(x)+f(y)且当x>1时,f(x)>0.
(1)判断函数f(x)在其定义域(0,+∞)上的单调性并证明;
(2)解不等式f(x)+f(x﹣2)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断f(x)在(0,+∞)的单调性;
(2)若x>0,证明:(ex﹣1)ln(x+1)>x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的中学生是否爱好运动,得到如下的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

由K2= 得,K2= ≈7.8

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

参照附表,得到的正确结论是(
A.在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别有关”
B.有99%以上的把握认为“爱好运动与性别有关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别无关”
D.有99%以上的把握认为“爱好运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.

(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?

(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.

附: .

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.

(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|f(x)=lg(x﹣1)+ },集合B={y|y=2x+a,x≤0}.
(1)若a= ,求A∪B;
(2)若A∩B=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数y= 的定义域为(
A.(﹣∞,1]
B.(﹣∞,2]??
C.(﹣∞,﹣ )∩(﹣ ,1]
D.(﹣∞,﹣ )∪(﹣ ,1]

查看答案和解析>>

同步练习册答案