【题目】设{an}是等差数列,数列{an}的前n项和为Sn , {bn}是各项都为正数的等比数列,且a1=b1=1,a3+b2=7,S2+b2=6 (Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{anbn}的前n项和Sn .
【答案】解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比q>0,∵a1=b1=1,a3+b2=7,S2+b2=6, ∴a3﹣(1+a2)=1,∴d=2,∴an=1+2(n﹣1)=2n﹣1.b2=7﹣a3=7﹣5=2.∴q=2,bn=2n﹣1 .
(Ⅱ)anbn=(2n﹣1)2n﹣1 .
∴数列{anbn}的前n项和Sn=1+3×2+5×22+…+(2n﹣1)×2n﹣1 ,
2Sn=2+3×22+…+(2n﹣3)×2n﹣1+(2n﹣1)×2n ,
∴﹣Sn=1+2×(2+22+…+2n﹣1)﹣(2n﹣1)×2n=1+2× ﹣(2n﹣1)×2n=(3﹣2n)×2n﹣3,
∴Sn=(2n﹣3)×2n+3
【解析】(I)利用等差数列与等比数列的通项公式即可得出.(II)anbn=(2n﹣1)2n﹣1 . 利用“错位相减法”与等比数列的求和公式即可得出.
【考点精析】根据题目的已知条件,利用数列的前n项和和数列的通项公式的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】已知椭圆和直线: ,椭圆的离心率,坐标原点到直线的距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)设△AOB的外接圆圆心为E.
(1)若⊙E与直线CD相切,求实数a的值;
(2)设点P在圆E上,使△PCD的面积等于12的点P有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)=(ax2+x﹣1)ex
(1)当a<0时,求f(x)的单调区间;
(2)若a=﹣1,f(x)的图象与g(x)= x3+ x2+m的图象有3个不同的交点,求实数m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,ABCD是菱形,PA⊥平面ABCD
(1)求证:BD⊥PC;
(2)若平面PBC与平面PAD的交线为l,求证:BC∥l.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC点,F棱AC上,且AF=3FC.
(1)求三棱锥D﹣ABC的体积;
(2)求证:AC⊥平面DEF;
(3)若M为DB中点,N在棱AC上,且CN= CA,求证:MN∥平面DEF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知多面体的底面是边长为2的正方形, 底面, ,且.
(Ⅰ)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.
(Ⅱ)求直线与平面所成角的正弦值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知分别是焦距为的椭圆的左、右顶点, 为椭圆上非顶点的点,直线的斜率分别为,且.
(1)求椭圆的方程;
(2)直线(与轴不重合)过点且与椭圆交于两点,直线与交于点,试求点的轨迹是否是垂直轴的直线,若是,则求出点的轨迹方程,若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com