精英家教网 > 高中数学 > 题目详情

【题目】已知圆心在x轴正半轴上的圆C与直线相切,与y轴交于MN两点,且

求圆C的标准方程;

过点的直线l与圆C交于不同的两点DE,若时,求直线l的方程;

已知Q是圆C上任意一点,问:在x轴上是否存在两定点AB,使得?若存在,求出AB两点的坐标;若不存在,请说明理由.

【答案】(I);(II);(III)存在满足题意.

【解析】

设圆C的方程为,利用点C到直线的距离为,求出a,即可求圆C的标准方程;

设直线l的方程为,则由题意可知,圆心C到直线l的距离,即可求出k的值,

方法一:假设在x轴上存在两定点,设是圆C上任意一点,由题意可得则,即可求出ab的值,

方法二:设是圆C上任意一点,由,对照圆C的标准方程,可得,解得即可.

解:由题意知圆心,且

中,,则

于是可设圆C的方程为

又点C到直线的距离为

所以

故圆C的方程为

设直线l的方程为,则由题意可知,圆心C到直线l的距离

,解得

又当时满足题意,

因此所求的直线方程为

方法一:假设在x轴上存在两定点,设是圆C上任意一点,则

解得

因此存在满足题意,

方法二:设是圆C上任意一点,

化简可得

对照圆C的标准方程

可得

解得解得

因此存在满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给定函数,若对于定义域中的任意,都有 恒成立,则称函数为“爬坡函数”.

(Ⅰ)证明:函数是“爬坡函数”;

(Ⅱ)若函数是“爬坡函数”,求实数的取值范围;

(Ⅲ)若对任意的实数,函数都不是“爬坡函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)满足xf′(x)﹣f(x)>0,当0<m<n<1时,下面选项中最大的一项是(
A.
B.logmn?f(lognm)
C.
D.lognm?f(logmn)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划投资A、B两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比例,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元).

(1)分别将A、B两产品的利润表示为投资量的函数关系式;

(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的60%,对教师管理水平给出好评的学生人数为总数的75%,其中对教师教学水平和教师管理水平都给出好评的有120人.
(1)填写教师教学水平和教师管理水平评价的2×2列联表:

对教师管理水平好评

对教师管理水平不满意

合计

对教师教学水平好评

对教师教学水平不满意

合计

问:是否可以在犯错误概率不超过0.1%的前提下,认为教师教学水平好评与教师管理水平好评有关、
(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量X;
①求对教师教学水平和教师管理水平全好评的人数X的分布列(概率用组合数算式表示);
②求X的数学期望和方差.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数且在.

1)求的值;并求函数在点处的切线方程;

(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响对近五年该农产品的年产量和价格统计如下表

参考公式: .

根据参考公式以求得

1)求关于的线性回归方程

2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润取到最大值?(保留两位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数为奇函数,且在上单调递增,若,则不等式的解集为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

求函数的单调递增区间

证明:当

(Ⅲ)确定实数的值使得存在恒有.

查看答案和解析>>

同步练习册答案