分析 根据使函数的解析式有意义的原则,结合分母不等于0,偶次被开方数不小于0,零的零次幂没有意义,可以构造关于x的不等式组,进而求解则可得答案.
解答 解:要使函数y=$\frac{{x}^{2}+2x}{\sqrt{2x+1}}$-(2x-3)0有意义,
须满足 $\left\{\begin{array}{l}{2x+1>0}\\{2x-3≠0}\end{array}\right.$,解得:x>-$\frac{1}{2}$,且x≠$\frac{3}{2}$.
∴函数y=$\frac{{x}^{2}+2x}{\sqrt{2x+1}}$-(2x-3)0的定义域为:{x|x>-$\frac{1}{2}$,且x≠$\frac{3}{2}$}.
故答案为:{x|x>-$\frac{1}{2}$,且x≠$\frac{3}{2}$}.
点评 本题考查函数的定义域及其求法,熟练掌握函数定义域的求解原则是解答本题的关键,是基础题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{24}$ | B. | $\frac{1}{23}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 0个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{5}$或$\frac{2}{5}$ | B. | $\frac{1}{5}$或$\frac{\sqrt{5}}{5}$ | C. | $\frac{2}{5}$或$\frac{2\sqrt{5}}{5}$ | D. | $\frac{\sqrt{5}}{5}$或$\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 在[-π,-$\frac{π}{2}$]上是减函数,在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函数 | |
B. | 在[-π,0]上是减函数,在[0,$\frac{π}{2}$]上是增函数 | |
C. | 在[-π,-$\frac{π}{2}$]上是增函数,在[-$\frac{π}{2}$,$\frac{π}{2}$]上是减函数 | |
D. | 在[-π,0]上是增函数,在[0,$\frac{π}{2}$]上是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com