精英家教网 > 高中数学 > 题目详情

在等差数列{an}中,首项a1=0,公差d≠0,若ak=a1+a2+a3+…+a7,则k=________.

22
分析:根据首项为0,公差不为0写出等差数列的通项公式,然后根据等差数列的性质把已知的等式化为关于a4的关系式,利用通项公式表示出a4,代入后即可表示出ak,再利用等差数列的通项公式表示出ak,两者相等即可得到关于k的方程,求出方程的解即可得到k的值.
解答:由a1=0,公差d≠0,得到an=(n-1)d,
则ak=a1+a2+a3+…+a7=(a1+a7)+(a2+a6)+(a3+a5)+a4=7a4=21d,
而ak=(k-1)d,所以k-1=21,解得k=22.
故答案为22.
点评:本题考查的知识点是等差数列的性质,其中根据a4是数列前7项的平均项(中间项)将ak=a1+a2+a3+…+a7,化为ak=7a4,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案