12£®ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îd£¾0£¬Ç°nÏîºÍΪSn£¬ÇÒÂú×ãa2•a3=45£¬a1+a4=14
£¨1£©ÊÔÑ°ÕÒÒ»¸öµÈ²îÊýÁÐ{bn}ºÍÒ»¸ö·Ç¸º³£Êýp£¬Ê¹µÃµÈʽ£¨n+p£©•bn=Sn¶ÔÓÚÈÎÒâµÄÕýÕûÊýnºã³ÉÁ¢£¬²¢ËµÃ÷ÄãµÄÀíÓÉ£»
£¨2£©¶ÔÓÚ£¨1£©ÖеĵȲîÊýÁÐ{bn}ºÍ·Ç¸º³£Êýp£¬ÊÔÇóf£¨n£©=$\frac{{b}_{n}}{£¨n+p£©•{b}_{n+1}}$£¨n¡ÊN*£©µÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓÉa2•a3=45£¬a1+a4=14£¬¿ÉµÃ$\left\{\begin{array}{l}{£¨{a}_{1}+d£©£¨{a}_{1}+2d£©=45}\\{2{a}_{1}+3d=14}\end{array}\right.$£¬d£¾0£¬½âµÃd£¬a1£®¿ÉµÃan£¬Sn£®ÓÉ£¨n+p£©•bn=Sn¶ÔÓÚÈÎÒâµÄÕýÕûÊýnºã³ÉÁ¢£¬¿ÉµÃ£¨n+p£©bn=2n2-n£®·Ö±ðÁîn=1£¬2£¬3£¬¼°Æäp¡Ý0£¬¼´¿É½âµÃp£®
£¨2£©ÓÉ£¨1£©¿ÉµÃ£ºp=0£¬b1=1£¬b2=3£¬¹«²î=2£®¿ÉµÃbn=2n-1£®ÓÚÊÇf£¨n£©=$\frac{2n-1}{n£¨2n+1£©}$=$\frac{1}{n+1+\frac{1}{2n-1}}$£®Áîg£¨x£©=x+1+$\frac{1}{2x-1}$£¬£¨x¡Ý1£©£¬ÀûÓõ¼ÊýÑо¿Æäµ¥µ÷ÐÔ×îÖµ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ßa2•a3=45£¬a1+a4=14£¬¡à$\left\{\begin{array}{l}{£¨{a}_{1}+d£©£¨{a}_{1}+2d£©=45}\\{2{a}_{1}+3d=14}\end{array}\right.$£¬d£¾0£¬½âµÃd=4£¬a1=1£®
¡àan=1+4£¨n-1£©=4n-3£®
Sn=$\frac{n£¨1+4n-3£©}{2}$=2n2-n£®
¡ß£¨n+p£©•bn=Sn¶ÔÓÚÈÎÒâµÄÕýÕûÊýnºã³ÉÁ¢£¬¡à£¨n+p£©bn=2n2-n£®
·Ö±ðÁîn=1£¬2£¬3£¬Ôò£¨1+p£©b1=1£¬£¨2+p£©b2=6£¬£¨3+p£©b3=15£®
¿ÉµÃb1=$\frac{1}{1+p}$£¬b2=$\frac{6}{2+p}$£¬b3=$\frac{15}{3+p}$£®
¡ßÊýÁÐ{bn}ÊǵȲîÊýÁУ¬¡à$\frac{2¡Á6}{2+p}$=$\frac{1}{1+p}$+$\frac{15}{3+p}$£®
»¯Îª£º2p2+p=0£¬½âµÃp=0»ò-$\frac{1}{2}$£®
¡ßp¡Ý0£¬¡àp=0£®
£¨2£©ÓÉ£¨1£©¿ÉµÃ£ºp=0£¬b1=1£¬b2=3£¬¹«²î=3-1=2£®
¡àbn=1+2£¨n-1£©=2n-1£®
¡àf£¨n£©=$\frac{{b}_{n}}{£¨n+p£©•{b}_{n+1}}$=$\frac{2n-1}{n£¨2n+1£©}$=$\frac{1}{n+1+\frac{1}{2n-1}}$£®
Áîg£¨x£©=x+1+$\frac{1}{2x-1}$£¬£¨x¡Ý1£©£¬
g¡ä£¨x£©=1-$\frac{2}{£¨2x-1£©^{2}}$=$\frac{4{x}^{2}-4x-1}{£¨2x-1£©^{2}}$=$\frac{£¨x-\frac{1+\sqrt{2}}{2}£©£¨x-\frac{1-\sqrt{2}}{2}£©}{£¨2x+1£©^{2}}$£¬
¿ÉµÃ£ºx¡Ê$[1£¬\frac{1+\sqrt{2}}{2}£©$ʱ£¬g¡ä£¨x£©£¼0£¬º¯Êýg£¨x£©µ¥µ÷µÝ¼õ£»x¡Ê$£¨\frac{1+\sqrt{2}}{2}£¬+¡Þ£©$ʱ£¬g¡ä£¨x£©£¾0£¬º¯Êýg£¨x£©µ¥µ÷µÝÔö£®
ÓÖg£¨1£©=3£¬g£¨2£©=3+$\frac{1}{3}$£®
Òò´Ëµ±x¡ÊN*ʱ£¬n=1ʱ£¬g£¨n£©È¡µÃ×îСֵ3£¬¹Ên=1ʱ£¬f£¨n£©È¡µÃ×î´óÖµ£¬f£¨1£©=$\frac{1}{3}$£®

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁеÄͨÏʽ¼°ÆäÇóºÍ¹«Ê½¡¢µÝÍƹØϵ¡¢ÊýÁеĵ¥µ÷ÐÔ¡¢ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ×îÖµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®[ÆÕͨÖÐѧ×ö]¶¨Ò壺[x]±íʾ²»³¬¹ýxµÄ×î´óÕûÊý£¬ÀýÈ磺[1.5]=1£¬[-0.5]=-1£®Èôf£¨x£©=sin£¨x-[x]£©£¬ÔòÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®y=f£¨x£©µÄ×îСֵΪ0£¬×î´óֵΪsin1B£®y=f£¨x£©ÎÞ×îСֵ£¬×î´óֵΪsin1
C£®y=f£¨x£©µÄ×îСֵΪ0£¬ÎÞ×î´óÖµD£®y=f£¨x£©ÎÞ×îСֵ£¬ÎÞ×î´óÖµ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª¼¯ºÏA={x|x2-3x+2=0}£¬B={x|ax-1=0}£®
£¨1£©Èôa=2£¬ÇóA¡ÈB£»
£¨2£©ÈôB⊆A£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚ£¨x2-2x£©£¨1+x£©6µÄÕ¹¿ªÊ½ÖУ¬º¬x3ÏîµÄϵÊýΪ-24£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÈôÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ×¼Ïß¾­¹ýµã£¨-1£¬1£©£¬ÔòÅ×ÎïÏß½¹µã×ø±êΪ£¨1£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¡°4£¼k£¼10¡±ÊÇ¡°·½³Ì$\frac{x^2}{k-4}$+$\frac{y^2}{10-k}$=1±íʾ½¹µãÔÚxÖáÉϵÄÍÖÔ²¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®´Óij´Î֪ʶ¾ºÈüÖÐËæ»ú³éÈ¡100Ãû¿¼ÉúµÄ³É¼¨£¬»æÖƳÉÈçͼËùʾµÄƵÂÊ·Ö²¼Ö±·½Í¼£¬·ÖÊýÂäÔÚÇø¼ä[55£¬65£©£¬[65£¬75£©£¬[75£¬85£©ÄÚµÄƵÂÊÖ®±ÈΪ4£º2£º1£®
£¨¢ñ£©ÇóÕâЩ·ÖÊýÂäÔÚÇø¼ä[55£¬65]ÄÚµÄƵÂÊ£»
£¨¢ò£©Ó÷ֲã³éÑùµÄ·½·¨ÔÚÇø¼ä[45£¬75£©ÄÚ³éÈ¡Ò»¸öÈÝÁ¿Îª6µÄÑù±¾£¬½«¸ÃÑù±¾¿´³ÉÒ»¸ö×ÜÌ壬´ÓÖÐÈÎÒâ³éÈ¡2¸ö·ÖÊý£¬ÇóÕâ2¸ö·ÖÊý¶¼ÔÚÇø¼ä[55£¬75]ÄڵĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èô²»µÈʽ4x-logax£¼0¶ÔÈÎÒâx¡Ê£¨0£¬$\frac{1}{4}$£©ºã³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª[$\frac{1}{4}$£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªËÄÀâ׶P-ABCDÖУ¬µ×ÃæABCDΪÁâÐΣ¬PA¡Íµ×ÃæABCD£¬¡ÏBAD=120¡ã£¬PA=PB=2$\sqrt{2}$£®ÈôµãNÔÚÏ߶ÎPDÉÏ£¬ÇÒPN=kPD£¨0£¼k£¼1£©£¬Æ½ÃæBCNÓëPAÏཻÓÚµãM£®
£¨1£©ÇóÖ¤£ºAD¡ÎMN£»
£¨2£©µ±k=$\frac{1}{4}$ʱ£¬ÇóÖ±ÏßBNÓëƽÃæPADËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸