精英家教网 > 高中数学 > 题目详情
在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥面ABC,AA1=a,A1C=CA=AB=a,AB⊥AC,D为AA1中点.
(1)求证:CD⊥面ABB1A1
(2)在侧棱BB1上确定一点E,使得二面角E-A1C1-A的大小为.
(1)详见解析;(2)点满足.

试题分析:(1)由面ACC1A1⊥面ABCAB⊥面ACC1A1AB⊥CD,由D为AA1中点,AC=A1C可推出CD⊥AA1,从而得到CD⊥面ABB1A1.(2)由题意,以点C为坐标系原点,CA为x轴,过C点平行于AB的直线为y轴,CA1为z轴,建立空间直角坐标系C-xyz,求平面面A1C1A的一个法向量、平面EA1C1的一个法向量,利用向量法求解.
(1)【证】∴面ACC1A1⊥面ABC,AB⊥AC
∴AB⊥面ACC1A1,即有AB⊥CD;
又AC=A1C,D为AA1中点,则CD⊥AA1  ∴CD⊥面ABB1A1.(6分)
(2)【解】如图所示以点C为坐标系原点,CA为x轴,过C点平行于AB的直线为y轴,CA1为z轴,建立空间直角坐标系C-xyz,则有A(a,0,0),B(a,a,0),A1(0,0,a), B1(0,a,a)

C1(-a,0,a),设,且
即有
所以E点坐标为
由条件易得面A1C1A的一个法向量为
设平面EA1C1的一个法向量为
可得
令y=1,则有,(9分)
,得
∴当时,二面角E-A1C1-A的大小为.(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为a的正方体ABCD-A1B1C1D1中,G为△BC1D的重心,

(1)求证:A1、G、C三点共线;
(2)求证:A1C⊥平面BC1D;
(3)求点C到平面BC1D的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体的边长为2,分别为的中点,在五棱锥中,为棱的中点,平面与棱分别交于.
(1)求证:
(2)若底面,且,求直线与平面所成角的大小,并求线段的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥E﹣ABCD中,矩形ABCD所在的平面与平面AEB垂直,且∠BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点
(1)求证:DE∥平面FGH;
(2)若点P在直线GF上,,且二面角D﹣BP﹣A的大小为,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直四棱柱底面直角梯形,是棱上一点,.

(1)求异面直线所成的角;
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,等腰梯形ABCD,AD//BC,P是平面ABCD外一点,P在平面ABCD的射影O恰在AD上,.

(1)证明:
(2)求二面角A-BP-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

空间直角坐标系中,点M(2,-1,3),N(-1,1,2)则|MN|=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

分别是的斜边上的两个三等分点,已知,则      

查看答案和解析>>

同步练习册答案