精英家教网 > 高中数学 > 题目详情
把函数y=f(x)的图象向右平移
π
4
个单位,然后将图象上的所有点的横坐标缩短到原来的一半(纵坐标不变)得到函数y=cosx的图象,则函数y=f(x)的解析式为(  )
A、y=cos(
1
2
x+
π
4
B、y=cos(2x+
π
4
C、y=cos(
1
2
x+
π
8
D、y=cos(2x+
π
2
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:利用逆变换,由函数y=cosx图象上所有的点的纵坐标不变,横坐标变为原来的2倍,再将函数y=f(x)的图象沿x轴向左平移
π
4
个单位,可得到函数f(x)的图象,从而可求函数f(x)的解析式.
解答: 解:由题意可得,把函数y=cosx的图象图象上所有的点的纵坐标不变,横坐标变为原来的2倍,再沿x轴向左平移
π
4
个单位可得f(x)的图象,从而可得f(x)=cos(
1
2
x+
π
8
),
故选:C.
点评:本题主要考查了三角函数的图象变换的两种变换的综合:平移变换与周期变换,而本题的求解关键是在熟悉变换的基础上,要善于利用逆变换.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线
x2
4
-
y2
12
=1的顶点到渐近线的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

AB为单位圆上的弦,P为单位圆上的动点,设f(λ)=|
BP
BA
|的最小值为M,若M的最大值Mmax=
3
2
,则|
AB
|的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域:
(1)y=x3
(2)y=x
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
msinxcosx+mcos2x+n(m,n∈R)在区间[0,
π
4
]上的值域为[1,2].
(Ⅰ) 求函数f(x)的单调递增区间;
(Ⅱ) 在△ABC中,角A,B,C所对的边长分别为a,b,c,当m>0时,若f(A)=1,sinB=4sin(π-C),△ABC的面积为
3
,求边长a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂生产的产品在出厂前都要做质量检测,每件一等品都能通过检测,每件二等品通过检测的概率均为
2
3
,现有5件产品,其中2件一等品.3件二等品.记该5件产品通过检测的产品个数为ξ,则随机变量的数学期望Eξ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)在定义域(-3,5)内可导,其图象如图所示,记y=f(x)的导函数为y=f′(x),则不等式f′(x)≤0的解集为(  )
A、(-3,-1]∪[
3
2
,3]
B、[-
5
2
 , 1]∪[2 , 4]
C、[-1 , 
3
2
]∪[3 , 5)
D、(-3 , -
5
2
]∪[1 , 2]∪[4 , 5)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=lg
2+2x+a•4x
3
,若当x∈(-∞,1]时,f(x)有意义,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:cos215°-sin215°=
 

查看答案和解析>>

同步练习册答案