精英家教网 > 高中数学 > 题目详情
9.如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,BA⊥AC,ED⊥DG,EF∥DG,且AC=1,AB=ED=EF=2,AD=DG=4.
(1)求证:BE⊥平面DEFG;
(2)求证:BF∥平面ACGD;
(3)求三棱锥A-FBC的体积.

分析 (1)由于平面ABC∥平面DEFG得AB∥DE,由AB=ED得四边形ABED是平行四边形,故BE∥AD,再由AD⊥平面DEFG得到BE⊥平面DEFG;
(2)取DG中点H,连接AH,FH,易证四边形ABFH是平行四边形,得出BF∥AH,从而得到BF∥平面ACGD;
(3)由平面ABC∥平面DEFG,AD⊥平面DEFG可知AD⊥平面ABC,于是V棱锥A-FBC=V棱锥F-ABC=$\frac{1}{3}$S△ABC•AD.

解答 证明:(1)∵平面ABC∥平面DEFG,平面ABED∩平面ABC=AB,平面ABED∩平面DEFG=DE,
∴AB∥DE,又∵AB=ED,
∴四边形ABED是平行四边形,
∴BE∥AD,∵AD⊥平面DEFG,
∴:BE⊥平面DEFG.
(2)取DG中点H,连接AH,FH.
则DH=$\frac{1}{2}$DG=2,∵EF∥DG,EF=2
∴EF∥DH,EF=DH,
∴四边形DEFG是平行四边形,
∴FH∥DE,FH=DE.
由(1)证明可知四边形ABED是平行四边形,
∴AB∥DE,AB=DE,
∴AB∥FH,AB=FH,
∴四边形ABFH是平行四边形,
∴BF∥AH,又∵AH?平面ACGD,BF?平面ACGD,
∴BF∥平面ACGD.
(3)∵平面ABC∥平面DEFG,AD⊥平面DEFG,
∴AD⊥平面ABC,
∴V棱锥A-FBC=V棱锥F-ABC=$\frac{1}{3}$S△ABC•AD=$\frac{1}{3}$×$\frac{1}{2}$×2×1×4=$\frac{4}{3}$.

点评 本题考查了线面垂直,线面平行的判定和几何体的体积计算,寻找直线平行与垂直的关系是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-a,x<1}\\{{x}^{2}-3ax+2{a}^{2},x≥1}\end{array}\right.$恰有2个零点,则实数a的取值范围是[$\frac{1}{2}$,1)∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.y=cos($\frac{1}{2}$x+φ)的图象与y=sin$\frac{1}{2}$x图象重合,则φ可能为-$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.扇形的中心角为$\frac{2π}{3}$,弧长为2π,则其半径r=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{2}$B.1C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知变量x,y满足不等式组$\left\{\begin{array}{l}{4x+3y-24≤0}\\{2x-y-2≥0}\\{x≥0}\\{y≥2}\end{array}\right.$,则z=(x-4)2+y2取值范围为[4,17].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={x|x≥3},B={x|x≤3},则A∩B=(  )
A.B.RC.{x||x≤3}D.{3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.证明不等式ln(1+$\frac{1}{x}$)>$\frac{1}{1+x}$(0<x<+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若集合A={y|y=2x},B={x|x2-2x-3>0,x∈R},那么A∩B=(  )
A.(0,3]B.[-1,3]C.(3,+∞)D.(0,-1)∪(3,+∞)

查看答案和解析>>

同步练习册答案