精英家教网 > 高中数学 > 题目详情
15.在△ABC中,角A、B、C所对的边分别为a、b、c,B=60°,b=$\sqrt{13}$.
(1)若3sinC=4sinA,求c的值;
(2)求a+c的最大值.

分析 (1)由正弦定理可求a=$\frac{3c}{4}$,进而利用余弦定理可得c的值.
(2)由正弦定理,可得a=$\frac{2\sqrt{13}}{\sqrt{3}}$sinA,c=$\frac{2\sqrt{13}}{\sqrt{3}}$sinC,利用三角函数恒等变换的应用化简可得a+c=2$\sqrt{13}$sin(A+$\frac{π}{6}$),由$0<A<\frac{2π}{3}$,可求范围$\frac{π}{6}<A+\frac{π}{6}<\frac{5π}{6}$,进而利用正弦函数的性质可求最大值.

解答 解:(1)∴由3sinC=4sinA,利用正弦定理,可得:3c=4a,即a=$\frac{3c}{4}$,
∵$B=\frac{π}{3}$,b=$\sqrt{13}$.
∴由余弦定理,可得:b2=a2+c2-2accosB,即:13=($\frac{3c}{4}$)2+c2-2×$\frac{3c}{4}×c×\frac{1}{2}$,解得:c=4.
(2)由正弦定理,可得:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$=$\frac{\sqrt{13}}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{13}}{\sqrt{3}}$,
∴a=$\frac{2\sqrt{13}}{\sqrt{3}}$sinA,c=$\frac{2\sqrt{13}}{\sqrt{3}}$sinC,
∴$a+c=\frac{{2\sqrt{13}}}{{\sqrt{3}}}({sinA+sinC})=\frac{{2\sqrt{13}}}{{\sqrt{3}}}[{sinA+sin({A+B})}]=\frac{{2\sqrt{13}}}{{\sqrt{3}}}[{sinA+sin({A+\frac{π}{3}})}]$=$\frac{{2\sqrt{13}}}{{\sqrt{3}}}({\frac{3}{2}sinA+sin\frac{{\sqrt{3}}}{2}cosA})=2\sqrt{13}sin({A+\frac{π}{6}})$.
由$0<A<\frac{2π}{3}$,得$\frac{π}{6}<A+\frac{π}{6}<\frac{5π}{6}$.
所以当$A+\frac{π}{6}=\frac{π}{2}$,即$A=\frac{π}{3}$时,${({a+c})_{max}}=2\sqrt{13}$.

点评 本题主要考查了正弦定理,余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.一个几何体的三视图如图所示,其体积为$\frac{11}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=xm(1-x)n在区间[0,1]上的图象如图所示,则m,n的值为(  )
A.m=1,n=1B.m=1,n=2C.m=2,n=1D.m=2,n=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移$\frac{π}{3}$个单位长度后,所得的图象与原图象重合,则ω的最小值为(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:?x∈R,sinx≤1,则¬p为(  )
A.?x∈R,sinx≤1B.?x∈R,sinx>1C.?x∈R,sinx≥1D.?x∈R,sinx>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知F1(-3,0),F2(3,0),动点P满足|PF1|-|PF2|=4,则点P的轨迹是(  )
A.双曲线B.双曲线的一支C.一条射线D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的三个顶点B1(0,-b),B2(0,b),A(a,0),焦点F(c,0),且B1F⊥AB2,则椭圆的离心率为$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直线y=kx+3(k≠0)与圆x2+y2-6x-4y+9=0相交于A、B两点,若$|AB|=2\sqrt{3}$,则k的值是$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.
(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大?
(2)在(1)的条件下,设取出的3个球中红球的个数为ξ,求ξ的分布列.

查看答案和解析>>

同步练习册答案