精英家教网 > 高中数学 > 题目详情

【题目】如图,已知在四棱锥平面平面 的中点.

(Ⅰ)证明: 平面

(Ⅱ)求三棱锥的体积.

【答案】(见解析.

【解析】试题分析:

(1)的中点,连接.由几何关系可证得四边形为平行四边形,则,利用线面平行的判断定理可得平面.

(2)由题意可得点到平面的距离是点到平面的距离的两倍,则.利用梯形的性质可得.

的中点由线面垂直的判断定理可得平面,则点到平面的距离即为.最后利用棱锥的体积公式可得.

试题解析:

(Ⅰ)取的中点,连接.

中, 为中位线,则,又,故

则四边形为平行四边形,得,又平面 平面,则平面.

Ⅱ)由的中点,知点到平面的距离是点到平面的距离的两倍,则

.

由题意知,四边形为等腰梯形,且 ,易求其高为,则.

的中点,在等腰直角中,有 ,又平面平面,故平面,则点到平面的距离即为.

于是, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线的参数方程为为参数),点是曲线上的一动点,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线的方程为 .

(Ⅰ)求线段的中点的轨迹的极坐标方程;

(Ⅱ)求曲线上的点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若恒成立,试确定实数的取值范围;

(3)证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在棱锥中, 为矩形, 与面角, 与面角.

1)在上是否存在一点,使,若存在确定点位置,若不存在,请说明理由;

2)当中点时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量分布在且销售量的分布频率

.

(Ⅰ)求的值并估计销售量的平均数

(Ⅱ)若销售量大于等于70,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自个组求随机变量的分布列及数学期望(将频率视为概率).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1讨论的单调性;

(2)当时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式|y4||y|2x对任意实数xy都成立则常数a的最小值为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cosxC2y=sin2x+),则下面结论正确的是(  )

A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C ,圆 的圆心到直线的距离为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若直线与圆相切,且与椭圆C相交于两点,求的最大值.

查看答案和解析>>

同步练习册答案