【题目】已知关于x的不等式(其中)。
(1)当a=4时,求不等式的解集;
(2)若不等式有解,求实数a的取值范围。
科目:高中数学 来源: 题型:
【题目】某班20名同学某次数学测试的成绩可绘制成如图茎叶图.由于其中部分数据缺失,故打算根据茎叶图中的数据估计全班同学的平均成绩.
(1)完成频率分布直方图;
(2)根据(1)中的频率分布直方图估计全班同学的平均成绩(同一组中的数据用改组区间的中点值作代表);
(3)根据茎叶图计算出的全班的平均成绩为,并假设,且取得每一个可能值的机会相等,在(2)的条件下,求概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数g(x)=log2 (x>0),关于方程|g(x)|2+m|g(x)|+2m+3=0有三个不同实数解,则实数m的取值范围为( )
A.(﹣∞,4﹣2 )∪(4 ,+∞)
B.(4﹣2 ,4 )
C.(﹣ ,﹣ )
D.(﹣ ,﹣ ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】请阅读下列材料:若两个正实数a1 , a2满足a12+a22=1,那么a1+a2≤ .
证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x , 恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤ .
根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校举行的一次数学竞赛中,全体参赛学生的竞赛成绩X近似服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有16名.
(1)试问此次参赛的学生总数约为多少人?
(2)若该校计划奖励竞赛成绩在80分以上(含80分)的学生,试问此次竞赛获奖励的学生约为多少人?
附:P(|X-μ|<σ)=0.683,P(|X-μ|<2σ)=0.954,P(|X-μ|<3σ)=0.997
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求满足下列各条件的椭圆的标准方程.
(1)长轴长是短轴长的2倍且经过点A(2,0);
(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com