精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的不等式(其中)。

(1)当a=4时,求不等式的解集;

(2)若不等式有解,求实数a的取值范围。

【答案】(1);(2).

【解析】

试题分析:本题主要考查解绝对值不等式、恒成立问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先将代入,,写出所求解的不等式,再利用零点分段法去绝对值,分情况解不等式,最后求并集,得到结论;第二问,将不等式转化为,所以关键是数形结合求出的最小值,再利用对数不等式的解法求出a的取值范围.

试题解析:(1)时,

时,,得 1分)

时,,得 2分)

时,,此时不存在 3分)

不等式的解集为 5分)

(2)

,即的最小值为 8分)

所以有解,则

解得,即的取值范围是 10分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数都满足,设函数 ).

(Ⅰ)求的表达式;

(Ⅱ)若,使成立,求实数m的取值范围;

(Ⅲ)设 ,求证:对于

恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班20名同学某次数学测试的成绩可绘制成如图茎叶图.由于其中部分数据缺失,故打算根据茎叶图中的数据估计全班同学的平均成绩.

(1)完成频率分布直方图;

(2)根据(1)中的频率分布直方图估计全班同学的平均成绩(同一组中的数据用改组区间的中点值作代表);

(3)根据茎叶图计算出的全班的平均成绩为,并假设,且取得每一个可能值的机会相等,在(2)的条件下,求概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数g(x)=log2 (x>0),关于方程|g(x)|2+m|g(x)|+2m+3=0有三个不同实数解,则实数m的取值范围为(
A.(﹣∞,4﹣2 )∪(4 ,+∞)
B.(4﹣2 ,4
C.(﹣ ,﹣
D.(﹣ ,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线.

(1)当时,求曲线在处的切线方程;

2)过点作曲线的切线,若所有切线的斜率之和为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请阅读下列材料:若两个正实数a1 , a2满足a12+a22=1,那么a1+a2 .
证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x , 恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2 .
根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校举行的一次数学竞赛中,全体参赛学生的竞赛成绩X近似服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有16名.

(1)试问此次参赛的学生总数约为多少人?

(2)若该校计划奖励竞赛成绩在80分以上(含80分)的学生,试问此次竞赛获奖励的学生约为多少人?

附:P(|X-μ|<σ)=0.683,P(|X-μ|<2σ)=0.954,P(|X-μ|<3σ)=0.997

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 平面 .

1)证明

2)求二面角的余弦值;

3)设点为线段上一点,且直线平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列各条件的椭圆的标准方程.
(1)长轴长是短轴长的2倍且经过点A(2,0);
(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为.

查看答案和解析>>

同步练习册答案