【题目】已知函数.
(1)求函数的单调区间;
(2)是否存在一个正实数,满足当时,恒成立,若存在,求出的值;若不存在,请说明理由.
【答案】(1)时,的增函数区间为,无减函数区间;时,的增函数区间为,减函数区间为;时,的增函数区间为,减函数区间为;(2)存在, .
【解析】
(1)根据题意,分析函数定义域,求导,分类讨论参数不同的取值范围时函数单调性,即可求解;
(2)根据题意,,由(1)知的最大值为,若对任意实数,恒成立,只须使即可.又因为,所以不等式等价于:,即:,设,对求导,分析单调性,讨论的范围,判断不等式成立条件.
(1)函数的定义域为,
①若在上为增函数;
②若,∵,∴当时,;当时,;
所以在上为增函数,在上为减函数;
③若,∵,∴当时,;当时,;
所以在上为减函数,在为增函数
综上可知,时,的增函数区间为,无减函数区间;
时,的增函数区间为,减函数区间为;
时,的增函数区间为,减函数区间为;
(2)由(1)知,时,的最大值为,
若对任意实数,恒成立,只须使即可.
又因为,所以不等式等价于:,
即:,
设,则,
∴当时,;当时,
所以,在上为减函数,在上为增函数,
∴当时,,不等式不成立,
当时,,不等式不成立,
当时,,不等式成立,
∴存在正实数且时,满足当时,恒成立.
科目:高中数学 来源: 题型:
【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在,,,,,(单位:克)中,经统计得频率分布直方图如图所示.
(1)经计算估计这组数据的中位数;
(2)现按分层抽样从质量为,的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在内的概率.
(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:
A:所有芒果以10元/千克收购;
B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购,通过计算确定种植园选择哪种方案获利更多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 10 | ||
女生 | 20 | ||
合计 |
已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为.
(1)请将上述列联表补充完整;
(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆C的长轴长为4.
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图空间几何体中,与,均为边长为的等边三角形,平面平面,平面平面.
(Ⅰ)求线段的长度.
(Ⅱ)试在平面内作一条直线,使得直线上任意一点与的连线均与平面平行,并给出详细证明;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为增强市民交通规范意识,我市面向全市征召劝导员志愿者,分布于各候车亭或十字路口处.现从符合条件的500名志愿者中随机抽取100名志愿者,他们的年龄情况如下表所示.
分组(单位:岁) | 频数 | 频率 |
5 | ||
① | ||
② | ||
合计 |
(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在[30,35)岁的人数;
(2)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加“规范摩的司机的交通意识”培训活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com