精英家教网 > 高中数学 > 题目详情
已知关于x的函数y=(2-ax)在[0,1]上是减函数,则a的取值范围是
A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)]
B

试题分析:因为关于x的函数y=(2-ax)在[0,1]上是减函数,而a>0,u=2-ax是减函数,所以y=u是增函数,因此,a>1且2-a×1>0,1<a<2,故选B。
点评:易错题,复合函数的单调性判定方法是:内外层函数的单调性“同增异减”。该题要注意对数的真数大于零。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=lnx-ax+-1.
(1) 当a=1时, 过原点的直线与函数f(x)的图象相切于点P, 求点P的坐标;
(2) 当0<a<时, 求函数f(x)的单调区间;
(3) 当a=时, 设函数g(x)=x2-2bx-, 若对于x1, [0, 1]使f(x1)≥g(x2)成立, 求实数b的取值范围.(e是自然对数的底, e<+1).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数是等差数列,
的值
A.恒为正数B.恒为负数C.恒为OD.可正可负

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数对定义域内的任意都有=,且当时其导函数满足
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中既是偶函数,又是区间上的减函数的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)求在点处的切线方程;
(2)求在区间的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在[0,2]上的最大值是7,则指数函数在[0,2]上的最大值与最小值的和为
A.6B.5C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为常数,)是上的奇函数.
(Ⅰ)求的值;(Ⅱ)讨论关于的方程的根的个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数
(1)若是定义域上的单调函数,求的取值范围;
(2)若在定义域上有两个极值点,证明:

查看答案和解析>>

同步练习册答案