已知数列{an}是以d为公差的等差数列,{bn}数列是以q为公比的等比数列.
(Ⅰ)若数列的前n项和为Sn,且a1=b1=d=2,S3<a1003+5b2-2010,求整数q的值;
(Ⅱ)在(Ⅰ)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(Ⅲ)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的约数),求证:数列{bn}中每一项都是数列{an}中的项.
分析:(Ⅰ)由等差等比数列的表达式an=2n,bn=2•qn-1,代入S3<a1003+5b2-2010直接求解即得到答案.
(Ⅱ)可以先假设数列{bn}中存在一项bk,满足bk=bm+bm+1+bm+2++bm+p-1,再根据已知的条件去验证,看是否能找出矛盾.如果没有矛盾即存在,否则这样的项bk不存在;
(Ⅲ)由已知条件b1=ar,得b2=b1q=arq=as=ar+(s-r)d,和等差等比数列的性质,由数学归纳法求证数列中每一项是否都是数列中的项.
解答:解:(Ⅰ)由题意知,a
n=2n,b
n=2•q
n-1,所以由S
3<a
1003+5b
2-2010,
可得到b
1+b
2+b
3<a
1003+5b
2-2010?b
1-4b
2+b
3<2006-2010?q
2-4q+3<0.
解得1<q<3,又q为整数,所以q=2;
故答案为2.
(Ⅱ)假设数列{b
n}中存在一项b
k,满足b
k=b
m+b
m+1+b
m+2++b
m+p-1,
因为b
n=2
n,∴b
k>b
m+p-1?2
k>2
m+p-1?k>m+p-1?k≥m+p(*)
又
bk=2k=bm+bm+1+bm+2++bm+p-1=2m+2m+1++2m+p-1==2
m+p-2
m<2
m+p,所以k<m+p,此与(*)式矛盾.
所以,这样的项b
k不存在;
故答案为不存在.
(Ⅲ)由b
1=a
r,得b
2=b
1q=a
rq=a
s=a
r+(s-r)d,
则
d=又
b3=b1q2=arq2=at=ar+(t-r)d?arq2-ar=(t-r)•,
从而
ar(q+1)(q-1)=ar(q-1)•,
因为a
s≠a
r?b
1≠b
2,所以q≠1,又a
r≠0,
故
q=-1.又t>s>r,且(s-r)是(t-r)的约数,
所以q是整数,且q≥2,
对于数列中任一项b
i(这里只要讨论i>3的情形),
有b
i=a
rq
i-1=a
r+a
r(q
i-1-1)
=a
r+a
r(q-1)(1+q+q
2++q
i-2)
=a
r+d(s-r)(1+q+q
2++q
i-2)
=a
r+[((s-r)(1+q+q
2++q
i-2)+1)-1]•d,
由于(s-r)(1+q+q
2++q
i-2)+1是正整数,所以b
i一定是数列{a
n}的项.
故得证.
点评:此题主要考查等差等比数列的性质的应用,以及数学归纳法在数列中的应用,题目较为复杂,需要一步一步的分析求解,计算量要求较高,属于难题.