精英家教网 > 高中数学 > 题目详情

【题目】已知

(Ⅰ)当时,求的极值;

(Ⅱ)若有2个不同零点,求的取值范围.

【答案】(1); (2).

【解析】

(Ⅰ)求出函数的导数,求其零点,根据零点分析各区间导数的正负,即可求出极值(Ⅱ)根据,分类讨论,分别分析当时,当时,当时导函数的零点,根据零点分析函数的极值情况.

(Ⅰ)当

为增函数,

为增函数

.

(Ⅱ)

时,,只有个零点;

时,

为减函数,为增函数

,∴当,使,

时,∴,∴

,∴ ,∴函数有个零点,

时,,令

,即时,当变化时 变化情况是

,∴函数至多有一个零点,不符合题意;

时,单调递增,∴至多有一个零点,不合题意,

③当时,即以时,当变化时的变化情况是

时,,,∴函数至多有个零点,

综上:的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某新建小区规划利用一块空地进行配套绿化.已知空地的一边是直路,余下的外围是抛物线的一段弧,直路的中垂线恰是该抛物线的对称轴(如图),点O的中点.拟在这个地上划出一个等腰梯形区域种植草坪,其中均在该抛物线上.经测量,直路长为60米,抛物线的顶点P到直路的距离为60.设点C到抛物线的对称轴的距离为m米,到直路的距离为n.

1)求出n关于m的函数关系式.

2)当m为多大时,等腰梯形草坪的面积最大?并求出其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的标准方程为该椭圆经过点,且离心率为

(1)求椭圆的标准方程;

(2)过椭圆长轴上一点作两条互相垂直的弦.若弦的中点分别为,证明:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)求的单调区间;

(2)求函数上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有10名员工,他们某年的收入如下表:

员工编号

1

2

3

4

5

6

7

8

9

10

年薪(万元)

4

4.5

6

5

6.5

7.5

8

8.5

9

51

1)求该单位员工当年年薪的平均值和中位数;

2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?

附:线性回归方程中系数计算公式分别为:,其中为样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义域为R的奇函数a为实数)

1)求a的值;

2)判断的单调性(不必证明),并求出的值域;

3)若对任意的,不等式恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C(ab0)过点,离心率为.

1)求椭圆C的方程;

2)若斜率为的直线l与椭圆C交于AB两点,试探究是否为定值?若是定值,则求出此定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题方程表示双曲线命题不等式的解集是. 为假 为真的取值范围.

【答案】

【解析】试题分析:由命题方程表示双曲线,求出的取值范围,由命题不等式的解集是,求出的取值范围,由为假, 为真,得出一真一假,分两种情况即可得出的取值范围.

试题解析:

范围为

型】解答
束】
18

【题目】如图,设是圆上的动点轴上的投影 上一点.

1)当在圆上运动时求点的轨迹的方程

2)求过点且斜率为的直线被所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

1)若,求证:函数为奇函数;

2)若,判断并证明函数的单调性;

3)若,函数在区间上的取值范围是,求的范围.

查看答案和解析>>

同步练习册答案