精英家教网 > 高中数学 > 题目详情

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若不等式f(x)>2x+m在区间,[-1,1]上恒成立,求实数m的取值范围.

解:(1)由f(0)=1,可设f(x)=ax2+bx+1(a≠0)
∵f(x+1)-f(x)=2x,
∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2ax+a+b
由题意得,,解得
故f(x)=x2-x+1
(2)由题意得,x2-x+1>2x+m
即x2-3x+1>m 对x∈[-1,1]恒成立,
令g(x)=x2-3x+1,又g(x)在[-1,1]上递减,故g(x)min=g(1)=-1
故m<-1
分析:(1)由f(0)=1,可设f(x)=ax2+bx+1(a≠0),代入f(x+1)-f(x)=2x,根据系数对应相等可求a,b进而可求f(x)
(2)由题意得,x2-x+1>2x+m,即x2-3x+1>m 对x∈[-1,1]恒成立,令g(x)=x2-3x+1,根据g(x)在[-1,1]上的单调性可求g(x)min,可求m的范围
点评:本题主要考查了利用待定系数法求解二次函数的函数解析式,及函数的恒成立与函数的最值求解的相互转化,主要单调性在函数的最值求解中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,则函数y=f(x)-3的零点是
-1,2
-1,2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足:①在x=1时有极值;②二次函数图象过点(0,-3),且在该点处的切线与直线2x+y=0平行.
(1)求f(x)的解析式;
(2)求函数g(x)=f(x2)的单调递增区间与极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(
x
+1)=x+2
,求函数f(x)的解析式;
(2)若二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数f(x)满足:f(0)=2,f(x)=f(-2-x),它的导函数的图象与直线y=2x平行.
(I)求f(x)的解析式;
(II)若函数g(x)=xf(x)-x的图象与直线y=m有三个公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知一次函数f(x)满足条件:f(3)=7,f(5)=-1,求f(0),f(1)的值;
(2)已知二次函数f(x)满足条件:f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.

查看答案和解析>>

同步练习册答案