精英家教网 > 高中数学 > 题目详情
13.一束光线从点(-1,1)出发,经x轴反射到圆C:(x-2)2+(y-3)2=1上的最短路径长度是(  )
A.4B.5C.3D.2

分析 求出点A关于x轴的对称点A′,则要求的最短路径的长为A′C-r(圆的半径),计算求得结果.

解答 解:由题意可得圆心C(2,3),半径为r=1,
点A关于x轴的对称点A′(-1,-1),
求得A′C=$\sqrt{(2+1)^{2}+(3+1)^{2}}$=5,
则要求的最短路径的长为A′C-r=5-1=4,
故选A.

点评 本题主要考查反射定理的应用,求一个点关于直线的对称点的方法,体现了转化、数形结合的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=3+2t}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρsin2θ-16cosθ=0,直线l与曲线C交于A,B两点,点P(1,3).求直线l的普通方程和曲线C的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)定义在[-2,2]上的图象如图所示,请分别画出下列函数的图象;
(1)y=f(x+1);
(2)y=f(x)+1;
(3)y=f(-x);
(4)y=-f(x);
(5)y=|f(x)|;
(6)y=f(|x|);
(7)y=2f(x);
(8)y=f(2x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设△A BC的内角A,B,C所对的边分别为a,b,c,且2acosC+c=2b.
(Ⅰ)求角A的大小;
(Ⅱ)若a=1,求△A BC的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题p:函数y=(c-1)x+1在R上单调递增;命题q:不等式x2-x+c≤0的解集为∅,若p∧q为假命题,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若-1<a<b<1,则下列不等式中成立的是(  )
A.-2<a-b<0B.-2<a-b<-1C.-1<a-b<0D.-1<a-b<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=|x+m|+|2x+1|.
(Ⅰ)当m=-1,解不等式f(x)≤3;
(Ⅱ)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,N是AC边上一点,且$\overrightarrow{AN}=\frac{1}{2}\overrightarrow{NC}$,P是BN上的一点,若$\overrightarrow{AP}=m\overrightarrow{AB}+\frac{2}{9}\overrightarrow{AC}$,则实数m的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.a=-6是直线l1:ax+(1-a)y-3=0和直线l2:(a-1)x+2(a+3)y-2=0垂直的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.不充分不必要条件

查看答案和解析>>

同步练习册答案