精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,讨论函数的单调性;

(2)若不等式 对于任意成立,求正实数的取值范围.

【答案】(1)答案见解析;(2) .

【解析】试题分析: 求出函数的定义域和导数,然后讨论当时,当时确定的单调性问题等价于对任意,有成立,设 ,根据函数的单调性求出的最大值,解关于的不等式,解出即可

解析:(1)函数的定义域为.

.

,则

时, 单调递增;

时, 单调递减.

,则

时, 单调递减;

时, 单调递增.

综上所述,当时,函数上单调递增,在上单调递减;当时,函数上单调递减,在上单调递增.

(2)原题等价于对任意,有成立.

,所以.

.

,得;令,得.

所以函数上单调递减,在上单调递增,

中的较大者.

所以上单调递增,故,所以

从而.

所以.

,则.

所以上单调递增.

,所以的解为.

因为,所以正实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)处的切线方程;

(2)时,求上的最大值;

(3)求证:的极大值小于1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为分组后某组抽到的号码为41.抽到的人中,编号落入区间 的人数为( )

A. 10 B. C. 12 D. 13

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的,男生追星的人数占男生人数的,女生追星的人数占女生人数的.若有的把握认为是否追星和性别有关,则男生至少有( )

参考数据及公式如下:

A. 12B. 11C. 10D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南2009~2018年梅雨季节的降雨量(单位:)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:

“梅实初黄暮雨深”.请用样本平均数估计镇明年梅雨季节的降雨量;

“江南梅雨无限愁”.镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量(/亩)与降雨量的发生频数(年)如列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?

(完善列联表,并说明理由).

亩产量\降雨量

合计

<600

2

1

合计

10

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.703

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,其中实数满足,若的最大值为,则 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数的最值

1)求函数的最小值.

2)求函数的最小值.

3)设,若,求的最小值.

4)若正数满足,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线C的左,右焦点,O是坐标原点C的一条渐近线的垂线,垂足为P,若,则C的离心率为  

A. B. 2 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是各项均为正数的数列的前项和,且.

1)求的值;

2)设,且数列的前项和满足对任意正整数恒成立,求实数的取值范围;

3)设,问:是否存在正整数,使得对一切正整数恒成立?若存在,请求出实数的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案