精英家教网 > 高中数学 > 题目详情

【题目】已知函数是常数.

(Ⅰ)求曲线在点处的切线方程,并证明对任意,切线经过定点;

(Ⅱ)当时,设的两个正的零点,求证:

【答案】(1) 切线过定点 (2)见解析

【解析】试题分析】(I)对函数求导,代入求得斜率,利用点斜式写出切线方程并化简,由此求得直线过定点.(II),利用二分法可判断函数在区间内有零点.利用导数可判断函数在区间内, 有唯一零点,再根据函数的单调性可证得.

试题解析

(Ⅰ)

所求切线方程为

,即

切线方程等价于,当时,恒有,即切线过定点

(Ⅱ)函数的定义域为

曲线在各定义域区间内是连续不断的曲线。

时,

所以在区间内有零点

在区间内,单调递减。

,则

所以在区间内有零点

单调递减知,在区间内有唯一零点

因为

所以

单调递减知,,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

1)若函数的图象在点处的切线平行于直线,求的值;

(2)讨论函数在定义域上的单调性;

3)若函数上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,F(-1, 0)是椭圆的左焦点,过点F且方向向量为的光线,经直线反射后通过左顶点D.

(I)求椭圆的方程;

(II)过点F作斜率为的直线交椭圆于A, B两点,M为AB的中点,直线OM (0为原点)与直线交于点P,若满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《数书九章》三斜求积术:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约一,为实,一为从隅,开平方得积”.秦九韶把三角形的三条边分别称为小斜、中斜和大斜,“术”即方法.以 分别表示三角形的面积,大斜,中斜,小斜; 分别为对应的大斜,中斜,小斜上的高;则 .若在 ,根据上述公式,可以推出该三角形外接圆的半径为__________

【答案】

【解析】根据题意可知: ,故设,由 代入可得,由余弦定理可得cosA=,所以由正弦定理得三角形外接圆半径为

型】填空
束】
17

【题目】在等差数列中,已知公差 ,且 成等比数列.

(1)求数列的通项公式

(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )经过点,且两焦点与短轴的一个端点的连线构成等腰直角三角形.

(1)求椭圆的方程;

(2)动直线 )交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以为直径的圆恒过点.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,曲线的参数方程是为参数).

Ⅰ)将曲线的参数方程化为普通方程;

Ⅱ)求曲线与曲线交点的极坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,F(-1, 0)是椭圆的左焦点,过点F且方向向量为的光线,经直线反射后通过左顶点D.

(I)求椭圆的方程;

(II)过点F作斜率为的直线交椭圆于A, B两点,M为AB的中点,直线OM (0为原点)与直线交于点P,若满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年12月,针对国内天然气供应紧张的问题,某市政府及时安排部署,加气站采取了紧急限气措施,全市居民打响了节约能源的攻坚战.某研究人员为了了解天然气的需求状况,对该地区某些年份天然气需求量进行了统计,并绘制了相应的折线图.

(Ⅰ)由折线图可以看出,可用线性回归模型拟合年度天然气需求量 (单位:千万立方米)与年份 (单位:年)之间的关系.并且已知关于的线性回归方程是,试确定的值,并预测2018年该地区的天然气需求量;

(Ⅱ)政府部门为节约能源出台了《购置新能源汽车补贴方案》,该方案对新能源汽车的续航里程做出了严格规定,根据续航里程的不同,将补贴金额划分为三类,A类:每车补贴1万元,B类:每车补贴2.5万元,C类:每车补贴3.4万元.某出租车公司对该公司60辆新能源汽车的补贴情况进行了统计,结果如下表:

为了制定更合理的补贴方案,政府部门决定利用分层抽样的方式了解出租车公司新能源汽车的补贴情况,在该出租车公司的60辆车中抽取6辆车作为样本,再从6辆车中抽取2辆车进一步跟踪调查,求恰好有1辆车享受3.4万元补贴的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l13x2y10直线l2axby10其中ab{1,2,3,4,5,6}

(1)求直线l1l2的概率;

(2)求直线l1l2的交点位于第一象限的概率.

查看答案和解析>>

同步练习册答案