【题目】已知函数.
(1)讨论函数的单调区间;
(2)证明:.
【答案】(1)见解析;(2)见解析
【解析】
(1),分和两种情况讨论单调性即可;(2)法一:将不等式变形为,构造函数,证明即可;法二:将不等式变形为,分别设,求导证明即可.
(1) ,
当时,,函数的单调增区间为,无减区间;
当时,,当,,单增区间为上增,单调减区间为上递减。
(2)解法1: ,即证,令,,,令,,
在,上单调递增,,,故存在唯一的使得,)在上单调递减,在上单调递增,,,当时, , 时,; 所以在上单调递减,在上单调递增,,得证.
解法2:要证: ,即证: ,令,,当时,,时,;所以在上单调递减,在上单调递增, ; 令,,,当 时,,时,; 所以在上单调递增,在上单调递减,,,,得证.
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①经过定点的直线都可以用方程表示;
②经过定点的直线都可以用方程表示;
③不经过原点的直线都可以用方程表示;
④经过任意两个不同的点、的直线都可以用方程表示,
其中真命题的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形是菱形,是矩形,平面平面,,,,为的中点.
(1)求证:∥平面;
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,动点与两定点连线的斜率之积为,记点的轨迹为曲线.
(1)求曲线的方程;
(2)若过点的直线与曲线交于两点,曲线上是否存在点使得四边形为平行四边形?若存在,求直线的方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,点是线段上的动点,则下列说法错误的是( )
A. 当点移动至中点时,直线与平面所成角最大且为
B. 无论点在上怎么移动,都有
C. 当点移动至中点时,才有与相交于一点,记为点,且
D. 无论点在上怎么移动,异面直线与所成角都不可能是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题:①命题“若,则”的逆否命题为“若,则”;②“”是“”的充分不必要条件; ③若为假命题,则均为假命题;④对于命题使得,则为,均有.其中,真命题的个数是 ( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com