精英家教网 > 高中数学 > 题目详情
已知向量
OA
=(2cosα,2sinα)
OB
=(-sinβ,cosβ)
,其中O为坐标原点.若β=α-
π
6
,则|
AB
|
=
 
分析:先用向量的减法运算表示出
AB
,再由向量模的运算法则可得答案.
解答:解:∵
AB
=
0B
 -
OA
=(-sinβ,cosβ)-(2cosα,2sinα)=(-sinβ-2cosα,cosβ-2sinα)
|
AB
|
=
(-sinβ-2cosα)2+(cosβ-2sinα)2

=
sin2β+4cos2α+4sinβcosα+cos2β+4sin2α-4sinαcosβ

=
5+4(sinβcosα-sinαcosβ)

=
5+4sin(β-α)

β=α-
π
6
代入可得
|
AB
|
=
5+4sin(α-
π
6
)
=
5-2
=
3

故答案为:
3
点评:本题主要考查向量的减法运算和模的运算,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线x+y=a与圆x2+y2=4交于A、B两不同点,O是坐标原点,向量
OA
OB
满足
OA
OB
=0,则实数a的值是(  )
A、2
B、±2
C、±
6
D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点A(2,0),点B为曲线
x=
2
cos α
y=
2
sin α
  上的动点,若{
AB
}
=
2
,则向量
OA
OB
的夹角为(  )
A、
4
B、
π
2
C、
π
4
D、
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+y=a与圆x2+y2=4交于A、B两点,O是坐标原点,向量
OA
OB
满足|
OA
+
OB
|=|
OA
-
OB|
,则实数a的值(  )
A、2
B、-2
C、
6
或-
6
D、2或-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列各式:
AB
+
BC
+
CA
;            
AB
+
MB
+
BO
+
OM

AB
-
AC
+
BD
-
CD

OA
+
OC
+
BO
+
CO

其中结果为零向量的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=(1,0),
OB
=(1,1),则|
AB
|等于(  )
A、1
B、
2
C、2
D、
5

查看答案和解析>>

同步练习册答案